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Abstract. In a previous paper, we studied the web by conicsWdP4
on a del Pezzo quartic surface

dP4 and proved that it enjoys suitable versions of most of the remarkable properties satisfied by

Bol’s webB. In particular, Bol’s web can be seen as the toric quotient of the Gelfand-MacPherson

web naturally defined on the A4-grassmannian variety G2(C5) and we have shown thatWdP4
can

be obtained in a similar way from the web WGM
Y5

which is the quotient by the Cartan torus of

Spin10(C), of the Gelfand-MacPherson 10-web naturally defined on the tenfold spinor variety S5,

a peculiar projective homogenous variety of type D5. In the present paper, by means of direct and

explicit computations, we show that many of the remarkable similarities between B and WdP4

actually can be extended to, or from an opposite perspective, can be seen as coming from some

similarities between Bol’s web andWGM
Y5

. The latter web can be seen as a natural uniquely defined

rank 5 generalization of Bol’s web. In particular, it carries a peculiar 2-abelian relation, denoted by

HLOGY5
, which appears as a natural generalization of Abel’s five terms relation of the dilogarithm

and from which one can recover the weight 3 hyperlogarithmic functional identity of any quartic

del Pezzo surface.
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This paper may be viewed as a continuation of [CP] and [Pi5], to which the reader is referred

for a more detailed exposition of the background and motivations underlying the questions ad-

dressed here. Nevertheless, the Introduction below should suffice to provide most readers with a

general overview of the main themes investigated in this work.

Here are a few words about the setting(s) and some general notations we will work with: except

in some cases which will be explicitly indicated and for which the setting is real algebraic or real

analytic, we work over the field C of complex numbers, in an algebraic or analytic framework. We

denote indifferently ‘ln’ or ‘Log’ the usual complex logarithm (defined as the primitive vanishing

at 1 of the logarithmic differential du/u on the punctured complex plane C∗). Given any positive

integer n, we set [[n]] for the set of positive integers less than or equal to n: one has [[n]] =

{1, 2, . . . , n}. We will denote by x, y the affine coordinates associated to the affine embedding

C2 ֒! P2, (x, y) 7! [x : y : 1].

1. Introduction

‘Cauchy’s identity’ of the logarithm

(

C
)

Log(x)−Log(y)−Log

( x

y

)
= 0

admits a ‘weight 2 ’ generalization, the so-called ‘Abel’s identity’

(

Ab
)

R(x)− R(y) − R

(
x

y

)
− R

(
1 − y

1 − x

)
+ R

(
x(1 − y)

y(1 − x)

)
= 0 ,

satisfied for any x, y ∈ R such that 0 < x < y < 1, by Rogers’ dilogarithm R, which is the function

defined by R(x) = Li2(x) + Log(x)Log(1 − x)/2 − π2/6 for x ∈]0, 1[.1

In [HM] (see also the last paragraph of [Gr, §4.1]), it is written (p. 393) that it has been widely

believed that the logarithm and the dilogarithm, together with the two functional identities above

that they satisfy, are the first two elements of an infinite sequence of higher logarithms which

share analogous properties: in particular each satisfies a peculiar functional identity, which even

may be fundamental in a certain sense. In the as yet unpublished preprint [GR], the authors wrote

that ‘writing explicitly functional equations for the classical n-th polylogarithm might not be the
“right" problem’, because ‘it seems that when n is growing, the functional equations become so
complicated that one can not write them down on a piece of paper’.

In [CP], it has been shown that to work with hyperlogarithms instead of just polylogarithms, a

simple and natural geometric construction allows to get a uniform series of functional identities,

up to weight 6, which are very concise and whose first two elements precisely are the classical

identities
(

C
)

and
(

Ab
)

of the logarithm and the dilogarithm. Given a del Pezzo surface dPd of de-

gree d ∈ {1, . . . , 6} with canonical class K, its set of conic classes K = { c ∈ PicZ
(
dPd

) | (−K, c) =
2 and c2 = 0

}
is known to be finite and for each c in it, if φc : dPd ! | c |≃ P1 stands for the asso-

ciated fibration in conics, then the set Σc ⊂ P1 of its singular values has exactly 8−d elements. To

Σc, one can associate the ‘complete weight w = 7− d antisymmetric hyperlogarithm AHw
c ’, which

is a multivalued function on P1, ramified at the points of Σc and which is canonically defined up

to sign. The main result of [CP] is the following:

1Here Li2 stands for the classical bilogarithm: one has Li2(x) =
∑+∞

n=1
xn

n2 = −
∫ x

0

Log(1−u)

u
du for any x such that |x|< 1.

Soustracting π2/6 in the given definition of Rogers dilogarithm is in order that the RHS of Abel’s identity be zero.

https://mathworld.wolfram.com/RogersL-Function.html
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Theorem. Given a point x ∈ dPd not lying on a line and given a determination of the hyperloga-
rithms AHw

c at φc(x) for any c ∈ K , there exists aK-tuple (ǫc)c∈K ∈
{± 1

}K , unique up to a global
sign,2 such that the following identity is satisfied in the (complex analytic) vicinity of x:
(
Hlogw

dPd

) ∑

c∈K
ǫc AHw

c

(
φc

)
= 0 .

For d = 6 and d = 5, the ramification sets Σc have cardinalities 2 and 3, respectively, and can

therefore be assumed to coincide with {0,∞} and {0, 1,∞}, respectively. With this normalization,

AH1
c and AH2

c are just the usual logarithm and Rogers dilogarithm R respectively. The del Pezzo

surfaces dP6 and dP5 are unique (there is no modulus), the corresponding hyperlogarithmic func-

tional identities as well and it is easy to check that they respectively coincide with Cauchy’s and

Abel’s identity: one has
(
Hlog1

dP6

) ≃ (
C
)

and
(
Hlog2

dP5

) ≃ (
Ab

)

(where the symbol ≃ here means a coincidence between two identities up to a (possibly local)

change of coordinates).

Motivated by the question of whether the ‘del Pezzo identities Hlogw
dPd

’ for w = 1, . . . , 6,

genuinely can be considered as the most natural higher weights generalizations of Abel’s relation

or not, we carried out a thorough comparison of Hlog2
dP5

and Hlog3
dP4

in [Pi5]. We did that by

taking a web geometer perspective. For X = dPd with d = 4, 5, let W be the corresponding Weyl

group acting on Pic(X) and let us denote byWdPd the web formed by the pencils of conics on X.

The main outcome of [Pi5] is that virtually all the remarkable properties of various kinds

satisfied by the pair
(
WdP5

,Hlog2
dP5
≃ Ab

)
admit natural analogues for

(
WdP4 ,Hlog3

dP4

)
, which

also hold true. Below is a list of some of the remarkable properties shared by both websWdP5

andWdP4
(see §1.1 and §1.2 of [Pi5] for further details):

• geometric definition as the webs formed by the pencils of conics on a del Pezzo surface;

• all their abelian relations are hyperlogarithmic; the Weyl group W acts on this space and

when viewed as an abelian relation, the identity
(
Hlogw

dPd

)
transforms according to the sig-

nature under the action of W and spans all the subspaces of antisymetric hyperlogarithmic

ARS by residues/monodromy; dues and monodromy;

• maximality of the rank together with non linearizability (they are exceptional webs);

• combinatorial characterization by means of the hexagonal subwebs;

• modularity (ie. definition by means of a web naturally defined on a moduli space of con-

figurations of points in a projective space);

• cluster character (ie. definition by means of some cluster variables of a cluster algebra);

• geometric construction à la Gelfand-MacPherson.

The fact that the two pairs
(
WdP5

,Ab
)

and
(
WdP4

,Hlog3
dP4

)
share so many similarities is quite

striking, and may suggest that ‘the hyperlogarithmic identity Hlog3
dP4

is, in some sense, the most

natural weight-3 generalization of Abel’s identityAb ≃ Hlog2
dP5

’.

2Actually, one can chose the determinations of the AHw
c ’s in such a way that one has ǫc = 1 for every c ∈ K , see

[CP] (in particular formula (9) in Theorem 3.1 therein).
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However, such a strong claim should be approached with caution. First–and quite evidently–the

rigorous meaning of ‘most natural generalization’ is far from being clear or universally accepted.

Second, what makes Abel’s identity for the dilogarithm particularly compelling is its relevance

across many seemingly unrelated areas of mathematics. By contrast, to date, we are not aware of

significant applications of Hlog3
dP4

beyond the theory of functional identities itself and the realm

of web geometry.
⋆

But there are more substantial considerations that temper the naive assumption of viewing

Hlog3
dP4

as ‘the’ most natural weight-3 analogue of Abel’s identity:

− the (smooth) del Pezzo quintic surface has no moduli hence the dilogarithmic identity

Hlog2
dP5

is genuinely unique. This is not the case for del Pezzo surfaces of degree d = 4

since the moduli space of these surfaces is of dimension 2. Hence there is a 2-dimensional

family of functional identities Hlog3
dP4

, and no unique/well-defined weight 3 hyperloga-

rithmic identity. The same phenomenon occurs for the hyperlogarithmic identities of

higher weights: for each d = 1, 2, . . . , 5, the Hlog7−d
dPd

’s form an irreducible complex ana-

lytic family of dimension 2(5 − d) of functional relations and in each family, no identity

appears as being more canonical or particular than the others;

− if Hlog2
dP5

and Hlog3
dP4

share an important number of nice features, there is a formal

difference between these identities which may make the latter identity appear as less fun-

damental than the former. Indeed, if Abel’s identity Ab ≃ Hlog2
dP5

involves only one

function, namely Rogers dilogarithm R, this is not the case for Hlog3
dP4

since for a generic

quartic surface dP4, the ten weight 3 hyperlogarithms AH3
c for c ∈ K do not coincide,

even up to sign and to precomposition by a projective automorphism;3

− the Weyl group WdPd of a del Pezzo surface dPd acts on the space of ARs ofWdPd but

there is a major difference between the case d = 5 and d ∈ {1, . . . , 4}. The natural group

embedding Aut
(
dPd

)
֒! WdPd is an isomorphism only for d = 5 hence the Weyl group

action on AR
(
WdPd

)
is not geometric (that is is not induced by automorphisms of the

considered del Pezzo surface) for any d ∈ {1, . . . , 4};
− if the identities Hlog3

dP4
were truly the ‘right’ weight 3 generalizations of Abel’s identity,

it would be natural to expect the same for the identities Hlogw
dPd

’s in higher weights w =
8 − d. It turns out that it does not seem to be the case since some of the most striking

remarkable properties shared by the websWdP5
andWdP4 are no longer satisfied by the

webs WdPd for d ≤ 3. For instance, by a direct computation, we have verified that the

curvature4 of a 27-webWdP3
is non zero, which implies that this web is not of maximal

rank, contrarily to the websWdPd for d = 4, 5.

3As it follows easily from the explicit form for Hlog3
dP4

given in [CP, §4], the quotient
{
AH3

c | c ∈ K
}/∼ is of

cardinal 5 if ∼ stands for the following equivalence relation: given two (germs of) functions F,G, one has F ∼ G if

and only if ±F = G ◦ γ for some projective automorphism γ ∈ Aut(P1) = PGL2(C).
4By definition, this is the sum of the Blaschke-Dubourdieu’s curvatures of all of the 3-subwebs ofWdP3

(see [CL]).
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The above considerations naturally led us to seek a generalization of the relationAb ≃ Hlog2
dP5

that satisfies the following desirable properties:

• It is defined on a space equipped with a natural action of the Weyl group of type D5, and
this action operates via automorphisms. Moreover, the looked for generalization behaves
coherently and compatibly with respect to this group action.

• It consists of a single, well-defined identity, without any module entering into the picture.

• This identity involves a unique element whose sum of pullbacks under a specific family of
maps vanishes identically.

• Moreover, every hyperlogarithmic functional identity Hlog3
dP4

can be recovered from this
single identity, and in a natural, canonical way.

In this paper, we provide a fully explicit formulation of such an identity and investigate several

of its noteworthy properties. In particular, we show that it is unique (up to multiplication by a

nonzero scalar) and that it satisfies all four of the criteria listed above.

An additional remarkable feature ofWdP5
is that it is a ‘cluster web’. We further demonstrate

that a certain lift of the generalization ofWdP5
discussed here also possesses a cluster structur–

albeit with respect to a generalized notion of cluster variety.

In the following sections, we present our main results in greater detail.

⋆

In their interesting paper [GM], Gelfand and MacPherson describe a geometric setting which

allows them to give a cohomological-analytic construction of Abel’s identity. On the purely geo-

metric side, they show that the del Pezzo quintic surface dP5 ≃ M0,5 together with the five

fibrations in conics, which correspond to the five forgetful morphisms M0,5 ! M0,4 ≃ P1, are

equivariant quotients, under the action of the Cartan torus HA4
of GL5(C), of the grassmannian

G2(C5) and of the five natural rational maps G2(C5) d G2
(
C5/〈ei〉

) ≃ G2(C4), induced for each

i ∈ {1, . . . , 5} by the linear projection C5
! C5/〈ei〉 onto the quotient of C5 by the line spanned

by the i-th element of the canonical basis (ek)5
k=1

of C5.

In view of generalizing Gelfand and MacPherson approach to the webs WdPd for any d ∈
{1, 2, . . . , 4}, we remarked in [Pi5] that there is an intrinsic way to recover G2(C5) from X4 =

dP5 ≃ M0,5: the former variety is the (projective) Cox variety of the latter.

Let dPd be a fixed smooth del Pezzo surface of degree d ∈ {2, . . . , 5}. We will also denote it

by Xr to emphasize that it can be obtained as the blow-up of P2 at r = 9 − d points in general

position. We denote by L the set of lines contained in Xr and by Er the Dynkin type of the

considered del Pezzo surface. The associated Weyl group acting transitively by permutations on

L will be denoted by Wr.

Then we have the following (see [Pi5, §4.5.2] for more details and references):

• there is a projective Cox variety P(Xr) which is acted upon by a rank r torus TNS =

TNS/C
∗ ≃ (

C∗
)r

which is the quotient of the Neron-Severi torus TNS = HomZ
(
Pic(Xr),C

∗)

by a one-parameter subgroup associated to the (anti)canonical class of Xr;
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• the Cox ring of Xr is generated by the lines contained in it.5 Consequently, the projective

Cox variety P(Xr) embeds into the projective space P
(
CL

)
;

• from some results by several authors (Popov, Batyrev-Popov, Derenthal, Serganova-Skoro-

bogatov) it follows that CL naturally is a minuscule representation of a simple complex

Lie group Gr of type Er. The weights of this representation identify with the lines in-

cluded in Xr and the Weyl group Wr acts transitively on their set;

• viewed as contained in P
(
CL

)
, the Cox variety P(Xr) actually is a subvariety of the as-

sociated minuscule homogeneous space Gr = Gr/Pr ⊂ P
(
CL

)
, where Pr is a suitable

maximal parabolic subgroup of Pr;

• moreover, up to a natural isomorphism TNS ≃ Hr between the torus acting on P(Xr)

and the Cartan torus Hr of Gr, the map P(Xr) ֒! Gr ⊂ P
(
CL

)
turns out to be a torus-

equivariant embedding;

• as shown by Skorobogatov in [Sk], there exists a Zariski open subset G
s f
r ⊂ Gr whose

complement has codimension at least 2, on which the action of Hr is sufficiently well-

behaved to define a geometric quotient Y r = G
s f
r /Hr. This quotient is a quasi-projective

variety. Moreover:

− the linear action of the Weyl group Wr on CL gives rise to an isomorphism Wr ≃
Aut

(
Y r

)
(see [Sk, Theorem 2.2]);

− there is a natural embedding FSS : Xr ֒! Y r inducing an isomorphism of the Picard

lattices F∗SS : PicZ(Y r) ≃ PicZ(Xr) and making commutative the following diagram:

(1) P(Xr)
�

�

//

��

Gr

��

⊂ P
(
CL

)

Xr
FSS

// Y r .

The interest of the material above is that it allows to construct the webWdPd , for an arbitrary

del Pezzo surface, from a unique web on Y r obtained as the quotient of a Hr-equivariant web

naturally defined on Gr and induced by linear projection on CL. Indeed, denoting by hR the Lie

algebra of the real part of Hr and by H+r ≃ (R>0)r the ‘positive part’ of the latter, we have the

following :

• there is a (real analytic) moment map µ : Gr ! h∗
R

whose image is the associated ‘mi-

nuscule weight polytope’ ∆r = ∆Gr ,Pr , that is the convex envelope of the weights of the

minuscule representation CL;

• for ζ generic, that is in a certain dense Zariski open subsetG◦r , the moment map induces an

isomorphism between the positive orbit H+r · ζ and the interior ∆̊r of the weight polytope,

which extends to an isomorphism of real analytic manifolds with corners µ : H+r · ζ ≃ ∆r;

• for each facet (that is a face of codimension 1) F of ∆r, letLF be the set of lines belonging

to F (in other terms LF is the set of vertices of F) and let ΠF : CL ! CLF be the linear

projection associated to the inclusion LF ⊂ L (i.e. Ker
(
ΠF

)
= CL\LF );

5More rigorously, the Cox ring of Xr is generated by any set {σℓ}ℓ∈L where for any line ℓ ⊂ Xr , σℓ is a non zero

element of H0
(
Xr,OXr (ℓ)

) ≃ C.
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• there exists a quotient GF of the subgroup of G letting invariant the decomposition in

direct sum CL = CLF ⊕ CL\LF and a homogeneous projective space GF = GF/PF ⊂
P
(
CLF

)
(for a certain parabolic subgroup PF constructed from P) such that (i). one has

GF = Gr ∩ P
(
CL

)
; and (ii). the restriction to Gr of the (projectivization of the) linear

projection ΠF gives rise to a dominant rational map Gr d GF , again denoted by ΠF;

• let HF be the Cartan torus of GF . There is a natural epimorphism of tori H ! HF with

respect to which ΠF : Gr d GF is equivariant. It follows that there exists a dominant

rational map πF fromY r onto the quotientYF = G
s f
F /HF such that the following diagram

commutes:

(2) Gr

��

ΠF
//❴❴❴❴ GF

��

⊂ P
(
CLF

)

Y
πF

//❴❴❴❴ YF ;

• for any conic class c ∈ K on Xr, there exists a uniquely determined facet Fc of ∆r such

that gluing the two diagrams (24) and (2) gives the following commutative one

P(Xr)
�

�

//

��

Gr

��

ΠFc
//❴❴❴❴ GFc

��

Xr
FSS

// Y r
πFc

//❴❴❴❴ YFc .

which is such that the composition of the rational maps of the bottom line coincides with

the conic fibration φc associated to c: as rational maps on Xr, one has φc = πFc ◦ fSS .

At this point, one can define the ‘Gelfand-MacPherson’s webs WGM
Gr

and WGM
Yr

, which are

respectively the (generalized) web on Gr and Y r, induced by the rational maps ΠFc and πFc for c

ranging in the set K of all conic classes of Xr: one has

WGM
Gr
=W

(
ΠFc

∣∣∣ c ∈ K
)

and WGM
Yr
=W

(
πFc

∣∣∣ c ∈ K
)
.

From the last two statements in the list above, we deduce thatWGM
Yr

can be seen as the quotient

of the webWGM
Gr

which is Hr-equivariant, and also that del Pezzo’s webWdPd is the pull-back

of the webWGM
Yr

under Skorobogatov-Serganova’s embedding FSS : dPd = Xr ! Y r: one has

(3) WdPd = F∗SS

(
WGM
Yr

)
.6

In this paper, we focus on the webs by conics of del Pezzo quartic surfaces and their relations to

the Gelfand-MacPherson webWGM
Y5

. More precisely, since theWdP4
’s can all be obtained from

Gelfand-MacPherson webWGM
Y5

, it is not unreasonable to ask whether this latter web cannot be

seen as a more natural generalization ofWdP5
≃WGM

Y4
than theWdP4’s.

⋆

6This is proved by direct computations for d ∈ {2, . . . , 4} (Maple worksheets of these computations are available

under request). For more details in the case when d = 4 (which is equivalent to r = 5), see [Pi5, Prop. 4.16].
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The webWGM
Y5

is defined on the variety Y5, which is rational and of dimension 5, by means

of 10 rational first integrals ψǫi : Y5 d P2 with i = 1, . . . , 5 and ǫ = ± (here we use notations

similar to those of [Pi5]). The main theme of the present paper is the study of the k-abelian

relations of WGM
Y5

for k = 0, 1, 2 and how these are related to the abelian relations of a given

WdP4
. Recall that a k-abelian relation (ab. k-AR) forWGM

Y5
, is a 10-tuple of k-forms

(
ηǫi

)
i,ǫ such

that
∑

i,ǫ
(
ψǫi

)∗(
ηǫi

)
= 0 (possibly just locally) on Y5. They form a vector space which we denote

by ARk(WGM
Y5

)
, and whose dimension rkk(WGM

Y5

)
is the ‘k-rank’ ofWGM

Y5
. AlthoughWGM

Y5
is a

‘web’ only in a generalized sense, a similar approach to the one described in [Pi2, §1.3.4] can be

applied to it and one can define the ‘virtual k-rank’ ρk(W) of any subwebW ofWGM
Y5

, this for

k ∈ {0, 1, 2}. An interesting fact is that all the virtual ranks ofWGM
Y5

are finite (see Proposition 3.3

further) and in this paper we will describe the spaces of k-ARs of the webWGM
Y5

for k = 0, 1, 2,

see from §3.2 to §3.4 (the two tables in §3.5 provide a concise summary of the results obtained in

these three subsections).

The most interesting case is that of 2-ARs ofWGM
Y5

and how they give rise to 1-ARs for any del

Pezzo webWdP4 . In order to state our main result about the 2-ARs, introducing some terminology

will be useful. For ψ standing for one of the first integrals ψǫi ofWGM
Y5

, we denote by

• C(ψ) the subalgebra of C(Y5) formed by compositions f ◦ ψ with f ∈ C(P2);

• LogC(ψ) the family of multivalued functions on Y5 of the form Log(φ) with φ ∈ C(ψ);

• dLogC(ψ) the space of ψ-logarithmic differential 1-forms, that is of rational 1-forms on

Y5 of the form dLog(φ) = dφ/φ with φ ∈ C(ψ).

The following theorem gathers some of the most interesting results obtained in this paper:

Theorem 1.1. 1. One has ρ2
(
WGM
Y5

)
= 11 and ρ2(W) ≤ 1 for every 5-subwebW ofWGM

Y5
.

2. Among all the 5-subwebs ofWGM
Y5

, exactly 16 have virtual 2-rank equal to 1. These are

the subwebsWǫ =W
(
ψ
ǫ1

1
, . . . , ψ

ǫ5

5

)
for the sixteen 5-tuples ǫ = (ǫi)

5
i=1
∈ {±1} such that

p(ǫ) = # {i | ǫi = 1 } is odd.7 Each such subweb Wǫ actually has maximal rank 1, with
AR2(Wǫ) spanned by a 2-AR LogARǫ which is complete, irreducible and logarithmic,
in the sense that the ψǫi

i -th component of LogARǫ belongs to dLogC(ψǫi

i ) ∧ dLogC(ψǫi

i )

for every i = 1, . . . , 5.

3. The LogARǫ’s for all odd 5-tuples ǫ’s span a vector space denoted by AR2
C

(
WGM
Y5

)
and

called the space of ‘combinatorial ARs’ ofWGM
Y5

. Moreover, one has

rk2
C

(
WGM
Y5

)
= dim AR2

C

(
WGM
Y5

)
= ρ2

(
WGM
Y5

)
− 1 = 10 .

4. There exists a 2-AR ofWGM
Y5

, denoted by HLOGY5
, which is complete, irreducible and

whose components are ‘dilogarithmic’ in the sense that for any first integral ψǫi ofWGM
Y5

,
the ψǫi -th component of HLOGY5

belongs to LogC(ψǫi ) dLogC(ψǫi ) ∧ dLogC(ψǫi ).

Moreover, HLOGY5
is unique up to multiplication by a non-zero scalar and one has

(4) AR2
(
WGM
Y5

)
= AR2

C

(
WGM
Y5

)
⊕

〈
HLOGY5

〉
,

7This has to be compared with the description of Bol’s subwebs ofWdP4
given in [Pi5, §4.3].
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which implies rk2
(
WGM
Y5

)
= ρ2

(
WGM
Y5

)
= 11: the webWGM

Y5
has maximal 2-rank.8

5. One can associate a divisor Dw of Y5 to each weight w of the minuscule half-spin rep-
resentation S +

5
. Then the 2-ARs of WGM

Y5
are regular on the complement in Y5 of the

union of all theDw’s which coincides with Y×5 . Moreover, the sixteen ARs LogARǫ’s are
exactly the logarithmic ARs obtained by considering the residues of HLOGY5

along the
Dw’s: for any odd 5-tuple ǫ, there exists a uniquely defined weight w(ǫ) such that, up to
multiplication by a non-zero constant, one has

ResDw(ǫ)

(
HLOGY5

)
= LogARǫ .

6. The action of the Weyl group WD5
by automorphisms on Y5 (cf. [Sk, Theorem 2.2]) gives

rise to a linear WD5
-action on AR2(WGM

Y5

)
which lets invariant the decomposition in

direct sum (4). This decomposition actually is the one into WD5
-irreducibles: the irrep

associated to the 1-dimensional component
〈

HLOGY5

〉
is the signature representation

whereas AR2
C

(
WGM
Y5

)
is the WD5

-irreducible module V10
[11,111]

.9

7. For any del Pezzo surface dP4, using Serganova-Skorobogatov embedding fSS : dP4 ֒!

Y5 (cf. (24) above), the weight 3 hyperlogarithmic abelian relation HLog3
dP4

of WdP4

(resp. the sixteen elements of HLogAR2
asym equivalent to HLog2 ≃ Ab) can be obtained

in a natural way from HLOGY5
(resp. from the sixteen logarithmic 2-abelian relations

LogARǫ ∈ AR2
C

(
WGM
Y5

)
) by means of residues.

An interesting feature ofWdP5
is that it is a cluster web. More precisely, it admits a birational

model which admits as first integrals the X-cluster variables of type A2. In [Pi5], we established

that each del Pezzo webWdP4
can also be defined by X-cluster variables (of type D4). It is natural

to wonder whether Gelfand-MacPherson’s webWGM
Y5

is cluster as well. Unfortunately we do not

have a complete answer for this web yet, but we have one for its liftWGM
S5

. In [Du], Ducat gave

the construction of a generalized cluster structure on S5 which is not a classical cluster one, but

enjoys the nice property of being of finite type. We prove the following result:

Proposition 1.2. Gelfand-MacPherson’s webWGM
S5

is cluster with respect to Ducat’s generalized
cluster structure on S5.

The similarities between the statements above to the corresponding ones for Bol’s web B ≃
WdP5

in [Pi5, §1.1] are even more striking than those in [Pi5, §1.2] about WdP4
. For this rea-

son, and also because the theorem above can be generalized to all the Gelfand-MacPherson webs

WGM
Y r

for r = 4, . . . , 8 (see §7 further), we believe that these latter webs are those which must re-

ally be considered as the most direct/fundamental generalizations ofB ≃WdP5
≃WGM

Y4
, and not

really the del Pezzo’s websWdP9−r which actually are 2-dimensional slices of the corresponding

Gelfand-MacPherson webs. All these considerations make it natural to ask the following

8It would be more rigorous to state this as ‘the 2-rank ofWGM
Y5

is AMP’, using the terminology introduced in [Pi2,

§1.3.5].
9Seeing it as a decomposition in WD5

-irreducibles, (4), must be compared with some results given in §5: in some

sense which could be made precise (cf. Proposition 5.2), AR2
C

(
WGM
Y5

)
corresponds to HLogAR2

asym and HLOG2 to

HLog3.



10 L. PIRIO

Question 1.3. Can the 2-abelian relation HLOGY5
ofWGM

Y5
be obtained following the geometric

approach of Gelfand-MacPherson, that is by integrating an invariant differential form ΩP on a
real form S5 of the spinor tenfold S5 which represents a certain characteristic class P ∈ H∗

(
S5,R

)

along the orbits of the action on S5 of the Cartan torus of a split real form of the group Spin(C10)?

This question is the subject of ongoing research by the author at the time of writing.

The rest of the article is organised as follows: Section 2 consists in some preliminaries. After

recalling some elements of web geometry in §2.1, we succinctly review the notion of Gelfand-

Mapherson web in §2.2. Then we discuss the geometry around the spinor tenfold in §2.3. The

third section is devoted to the study ofWGM
Y5

especially from the point of view of its ranks and

abelian relations. First, in §3.1, working with some adapted rational coordinates previously in-

troduced, we give a list of explicit rational first integrals Ui (see (31)) for a birational model of

WGM
Y5

, denoted by WGM
Y5

. After having computed the virtual and ordinary ranks of WGM
Y5

, we

start to study the abelian relations of this web in the following subsections. The most important of

the ARs is the 2-AR with logarithmic coefficient HLOGY5
which corresponds to the differential

identity denoted the same which is given in Proposition 3.4. Then the space of abelian relations

ARk(WGM
Y5

)
for k = 2, 1, 0 are successively studied in the subsections §3.2, §3.3 and §3.4 re-

spectively. In particular, we describe the structures of these spaces relatively to the action of the

Weyl group WD5
and indicate how these spaces (or rather some subspaces of them) are related

with respect to the total derivatives or to taking residues of ARs. Many of the results concerning

the ARs ofWGM
Y5

are brought together succinctly in the tables page 1.

In Section 4, we investigate the cluster nature of Gelfand–MacPherson’s web WGM
S5

on the

spinor tenfold S5. We show that, in suitable coordinates, the components of the face maps defining

this web are, up to minor modifications, given by the cluster variables of the finite-type LPA

structure on S5, constructed by Ducat in [Du].

Section 5 is devoted to the study of a particular 5-subweb W+Y5
of the Gelfand–MacPherson web

WGM
Y5

, defined by first integrals with simple monomial components. We investigate its k-abelian

relations for k = 0, 1, 2. In particular, we show that W+Y5
carries a distinguished logarithmic 1-

abelian relation AR1
δ , from which Abel’s classical five-term identity for the dilogarithm can be

recovered in a direct and natural way.

One of the main results of this paper, established in Section 6, is that for any smooth del Pezzo

quartic surface dP4, the hyperlogarithmic weight-3 identity HLogdP4
can be deduced from the

2-abelian relation HLOGY5
ofWGM

Y5
. This is first shown at the symbolic level in §6.1, and then

concretely by manipulating explicit abelian relations in §6.2.

Section 7 explains how most of the explicit and computational methods developed throughout

this paper for the Gelfand–MacPherson webWGM
Y5

can be extended to the entire family of webs

WGM
Y r

for r = 4, 5, 6, 7. We first describe how to make these webs explicit in the cases r = 6, 7

(see §7.1), and then show that the main results regarding the top-degree abelian relations ofWGM
Y5

extend naturally to the websWGM
Y r

for r = 6, 7 (see Theorem 7.9). In particular, we prove that

each web WGM
Y r

carries an essentially unique ‘master’ (r−3)-abelian relation HLOGY r , from

which all other (r − 3)-abelian relations of the web under consideration can be recovered via

residue or monodromy.
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The final section, Section 8, outlines several perspectives and open questions inspired by our

results. In §8.1, we reflect on the many striking properties shared by the webs WdP4
≃ WGM

Y4

and WGM
Y5

. We conclude in §8.2 with a speculative discussion on a possible interpretation of

the differential identity HLOGY5
as the manifestation of an as-yet-undetermined property of a

scattering diagram conjecturally associated with Y5.

2. Preliminaries: elements of web geometry and birational geometry around S5

We start be recalling/introducing general notions of web geometry in a generalized setup

(namely, for ‘generalized webs’). Then we quickly review the notion of ‘Gelfand-MacPherson

web’ introduced in [Pi5] in §2.2 before discussing in §2.3 several properties of the most impor-

tant space considered in this paper, namely the spinor tenfold S5.

2.1. Elements of web geometry. We introduce here basic notions of web geometry. The webs

we are considering here are quite general, and in particular more general than the webs encoun-

tered in the classical literature on the subject. For a more detailed overview of web geometry as

we need it here, see [Pi2, §1].

Let M be an irreducible analytic (hence possibly singular) variety. In this text, a ‘d-web’ on M
(for a positive integer d) is a finite collection W =

(F1, . . . ,Fd
)

of d pairwise distinct foliations

on M, all of the same codimension.10 We will also assume that for m ∈ M generic, then the

tangent spaces of the foliations of W at m span the whole tangent space of M at this point, ie.

TmM =
〈

TmFi | i ∈ [[d]]
〉
, and that for i, j distinct, TmFi and TmF j intersect transversally in Tm M.

When these two conditions are fulfilled, m is said to be a ‘smooth or a regular point’ ofW.

Another d-webW′ =
(F ′i

)
i∈[[d]] defined on another manifold M′ is ‘equivalent’ toW if there

exist m ∈ M and m′ ∈ M′, regular points forW andW′ respectively, as well as a local biholo-

morphism ϕ : (M,m) ! (M′,m′) such that ϕ∗
(
W′) = (

ϕ∗(F ′i )
)
i∈[[d]] coincides with the germ of

W at m, possibly up to reindexing the foliations Fi of this web. One writesW ≃W′ when this

is occuring.

For simplicity, assume that M is a connected open subset in Cn and that each Fi is defined by a

global holomorphic submersion Ui ! Cc, where c ∈ {1, . . . , n − 1} stands for the codimension of

the web. For any i ∈ [[d]], any k ≤ c and any subset I = {i1, . . . , ik} with 1 ≤ i1 < i2 < . . . < ik ≤ c,

one sets Ωk
i,I = dUi,i1 ∧ . . . ∧ dUi,ik . Then one defines Ωk

Fi
as the locally-free sheaf of OM-

modules freely spanned by the Ωk
i,I’s, for all I ⊂ {1, . . . , c} of cardinality k. Given an open subset

O ⊂ M and k ∈ {0, . . . , c}, one defines a k-abelian relation (ab. k-ARs) ofW on O as a d-tuple

(ηi)
d
i=1
∈ ∏d

i=1Ω
k
Fi

such that
∑d

i=1 ηi = 0 in Ωk(O). The abelian relations form a vector subspace

of Ωk(O)⊕d and letting O vary among the open subsets of M, one defines a local system which

we will denote by ARk(W)
or just ARk whenever there is no ambiguity about the web under

consideration. When working on a fixed domain D, we will allow ourselves to use the same

notation ARk(W)
for the vector space of k-ARs on D, which, rigorously, should be denoted by

ARk(W)
(D).

By definition, the k-rank rk(W)
is the rank of ARk(W)

. It is an element of N = N∪{∞}which

is invariantly attached to W: two equivalent webs have the same k-rank, for any k less than to

10Classically, one requires that the tangent spaces of the leaves of a web satisfy a certain general position assumption

(everywhere or only at the generic point of M), but it is not the case here.
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equal to the codimension of the webs. Given a point m ∈ M smooth for W, let TmW be the

constant web on TmM ≃ Cn with first integrals the linear maps dUi(m) : TmM ! TUi(m)C
c ≃ Cc.

For k ∈ {0, . . . , c} and any σ ≥ 0 (with σ > 0 if k = 0), let ARk
σ(TmW) be the space of k-ARs

(ηi)
d
i=1

of TmW with each ηi being a k-differential form on TmM with coefficients in Symσ(T ∗mM
)

(that is, polynomials of degree σ on Tm M). Then one defines the ‘σ-th virtual k-rank ofW at m’,
denoted by ρk

m,σ
(
W

)
, as the dimension of ARk

σ(TmW). One verifies easily that the dimension of

the space of germs of k-ARs at m is less than or equal to the ‘total virtual k-rank at m’ ρk
m
(
W

)
:=∑

σ ρ
k
m,σ

(
W

)
. We thus define the ‘σ-th (resp. the total) virtual k-rank’ ρk

σ

(
W

)
resp. ρk(W)

) of

the considered web as the value ρk
m,σ

(
W

)
(resp. ρk

m
(
W

)
) for m generic.

The webW is said to have ‘as maximal as possible’ (ab. AMP) k-rank when rk(W)
= ρk(W)

,

with this integer being positive and finite. In this case, we will also say thatW is ‘k-AMP’. Being

(k-)AMP has to be view as a strong feature of a web, a wide generalization of the classical notion

in web geometry of being of ‘maximal rank’ (for more perspective on this notion, see [Pi2, §1.3]).

For any nonnegative k such that k ≤ c, the total derivative gives rise to a linear map

dk : ARk(W)
−! ARk+1(W)

.(5)
(
ηi
)d
i=1 7−!

(
dηi

)d
i=1

Accordingly to the usual terminology, abelian relations in the kernel of dk will be said to be

‘closed’, and those in its image, ‘exact ARs’.

Of course, one always have an inclusion dk(ARk(W)) ⊂ Ker
(
dk+1) in ARk+1(W)

but, even if

one is considering the ARs locally, on a simply connected domain or even at the level of germs,

in general it is not true that this inclusion is an equality. Indeed, let χ = (χi)
d
i=1

be a germ of

(k + 1)-AR for W, at a smooth point m ∈ M of this web. This means that χi ∈ Ωk+1(M,m) is

Fi basic for each i ∈ [[d]] and that
∑d

i=1 χi = 0. Let us assume moreover that χ is closed, i.e. one

has dχi = 0 for any i. Hence any χi is locally exact thus one may first think that it is possible to

integrate χ and construct a (germ of) k-AR η = (ηi)
d
i=1

such that dk(η) = χ.

But this is not always possible. Indeed, the ηi’s, in addition to being primitives of the cor-

responding χi’s, must satisfy two additional conditions: (1) each ηi must be Fi-basic, and (2)∑d
i=1 ηi = 0 in Ωk(M,m). These two conditions cannot always be simultaneously fulfilled. In

particular, the 2-abelian relation HLOGY5
considered in this paper, although closed, is not exact

as an abelian relation (see the decompositions in direct sums (44) and (50) in Coro/Theorem(?)

3.10 and Theorem 3.14 respectively).11

2.2. Gelfand-MacPherson webs. We review very quickly some material introduced in [Pi5,

§4.5.1] to which we refer for further details.

Let G be a simple complex Lie group of Dynkin type D, and let H ⊂ G be a Cartan torus, with

associated set of simple roots Φ ⊂ h∗R, where hR stands for the real part of the Lie algebra of H.

Let P be a standard parabolic subgroup, assumed to be maximal (to simplify), and let ωP be the

vertex of D corresponding to it. If V = VP stands for the G-representation of highest weight ωP,

there exists a ‘highest-weight vector’ vP ∈ V wich is of weight ωP and such that P coincides with

the stabilizer of the line [vP] ∈ P(V) and the orbit X = G · [vP] is closed in P(V). It follows that X

11Another place to look is the last line of Table 1.
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is a homogeneous algebraic submanifold of P(V) which naturally identifies with G/P. LetWP be

the set of weights of the considered representation, namely the set of weights w ∈ h∗R for which

the corresponding weight subspace Vw ⊂ V is non-trivial. The ‘weight polytope’ ∆ = ∆D,ωP of the

representation V is the convex envelope of WP in h∗R. The Weyl group WD = NG(H)/H acts on

h∗R and the set of vertices of ∆ can be proved to coincide with the Weyl orbit W ·ωP of the highest

weight.

To a facet F of ∆ (that is, a face of codimension 1), one can associate a type (DF , ωF) which

is a marked Dynkin diagram obtained from (D, ωP) by removing an extremal vertex. Then V can

be seen as a representation for the simple complex Lie group of type DF , noted by GF , and there

exists a decomposition of GF-subrepresentations V = VF ⊕VF where VF is the sub-representation

with highest weight ωF . To the facet F is associated a one-parameter subgroup HF of H and

denoting by HF the Cartan torus of GF , there is a surjective map of Cartan tori H ! HF with

kernel HF which induces an identification H/HF

∼
! HF Then if PF stands for the maximal

standard parabolic subgroup of GF associated to ωF , then the two following facts occur:

(i). setting XF = GF/PF ⊂ PVF , one has XF = X ∩ PVF;

(ii). the linear projection from PVF onto PVF gives rise to a surjective rational map ΠF : X d
XF . Moreover, this map is equivariant with respect to the epimorphism of tori H ! HF .

Now we restrict the discussion to some particularly nice cases12 which contain those of the

minuscule homogeneous spaces hence the specific case we will be interested in. In [Sk] (see also

[SS]), the author(s) consider a Zariski-open subset Xs f ⊂ X on which H acts nicely, and such that

the quotient Y = Xs f /H is a rational quasi-projective variety. From the point (ii). above, it follows

that ΠF descends to a rational map πF : Y d XF/HF where the target space has to be understood

as a quotient with respect to the action of HF on XF viewed as a rational action. A facet is said to

be ‘W-relevant’ whenever XF/HF has positive dimension. We define the ‘Gelfand-MacPherson
webs’ WGM

X and WGM
Y

as the webs respectively defined by the face maps ΠF and πF , for all

W-relevant facets F of the weight polytope ∆G,P. From the equivariance property stated in (ii).
above, it follows thatWGM

X is H-equivariant and that its quotien by H is preciselyWGM
Y

.

The most basic example to have in mind is the one when X = G2(C5), which corresponds to

the case of type (A4, ω2).13 The moment/weight polytope is the hypersimplex ∆2,5 = {(ti)5
i=1
∈

[0, 1]5 |∑5
i=1 ti = 2 }. This polytope has 10 facets which are obtained by intersecting it with the the

affine hyperplanes cut out by ti = τ for i = 1, . . . , 5 and τ ∈ {0, 1}. All the facets when τ = 1 are

3-simplices, and the associated type is (A3, ω3), hence these facets are notW-relevant. Any facet

Fi = ∆2,5∩{ti = 0} is a hypersimplex of type (A3, ω2), with XFi ≃ G2(C4). Denoting by (ei)
5
i=1

the

canonical basis of C5, the face mapΠFi associated to Fi identifies with the rational map G2(C5)d

G2
(
C5/〈ei〉

) ≃ G2(C4) induced by the linear quotient map C5
! C5/〈ei〉. If one denotes by H and

HFi the Cartan tori of the linear groups acting on X and XFi , then the corresponding GIT quotients

respectively are X//H = G2(C5)//H ≃M0,5 and XFi//HFi ≃M0,4 ≃ P1. And the H-equivariant

quotient of ΠFi is the i-th forgetful map πFi :M0,5 dM0,4 = P1 (which actually is a morphism).

It follows that in this case, Gelfand-MacPherson web on Y = M0,5 is the 5-web with the five

12See [Sk], and in particular the list of cases to be excluded given in Proposition 2.1 therein.
13The best reference on this case is the great paper [GM] by Gelfand and MacPherson.
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forgetful maps as first integrals, hence is a model of the dilogarithmic Bol’s web B: one has

WGM

M0,5

=W
(
πFi :M0,5 −!M0,4 ≃ P1

)5

i=1
≃ B .

The main object of study in this paper is Gelfand-MacPherson’s web of the quotient, by the

rank 5 Cartan torus, of the spinor 10-fold S5 which is a homogenous projective variety of type D5.

2.3. Birational geometry around the spinor 10-fold S5. We recall some facts we will need

further in the paper. For details, see our previous article [Pi5] and the references therein.

2.3.1. Groups of Lie type D5. Let q ∈ Sym2(V∨) be the non-degenerate complex quadratic form

on V = C10 given by

q(x) =

5∑

i=1

xixi+5

in the standard coordinate system (xi)
10
i=1

on V . The associated orthogonal group O(V, q) = O10(C)

is a simple complex Lie group of type D5. Its universal covering is the so-called ‘spin group’
Spin10(C) and the canonical covering Spin10(C) ! O10(C) is known to be 2-to-1. The corre-

sponding Dynking diagram of type D5 we are going to work with is labeled as follows:

21 3

4

5

Figure 1. The marked Dynkin diagram of type (D5, ω4). (The marking of the

fourth vertice corresponds to the choice of the standard maximal parabolic sub-

group used to construct the spinor tenfold, see below).

Coxeter matrix associated to the Dynkin D diagram of type D5: it is the symmetric 5 × 5

matrix (mi j)
5
i, j=1

where for all i, j such that 1 ≤ i ≤ j ≤ 5, one has mii = 1 and when i < j, one

has mi j = 2 if there is no arrow between the i-th and j-th vertices of the diagram, and mi j = 3

otherwise. The associated ‘Weyl group of type D5’ is the group with generators si for i = 1, . . . , 5,

with relations (sis j)
mi j for any i, j ∈ [[5]]. In the case under scrutiny, the generators si’s of WD5

are involutions, which pairwise commute, i.e. (sis j)
2 = 1 except if the i-th and j-th vertices of

D5 are linked by one of its arrows, in which case one has (sis j)
3 = 1. To summarise, setting

J = {( j, j + 1) | j = 1, . . . , 4 } ∪ {(3, 5)}, then for all distinct i, j ∈ [[5]], one has

(6)

− s2
i = 1;

− (sis j)
2 = 1 (that is si and s j commute) if (i, j) < J;

− (sis j)
3 = 1 if the pair (i, j) belongs to J.

The explicit form of these relations will be used further in §2.3.6.
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2.3.2. The orthogonal grassmannian OG5(C10), the spinor 10-fold S5 and the half-spin rep-

resentations. By definition, the ‘orthogonal grassmannian OG5(V)’ is the subvariety of the stan-

dard grassmannian G5(V) whose points are the 5-dimensional subspaces Π ⊂ V which are ‘totally

isotropic’, that is such that q|Π≡ 0. It is known that OG5(V) is the disjoint union of two indistin-

guishable isomorphic irreducible components which will be denoted by OGǫ
5
(V) with ǫ = ±.

The component OG+
5

(V), which will be the privileged one for us, is homogeneous under the

natural action of the ‘spin group’ Spin10(C). In fact, if P4 stands for the standard maximal para-

bolic subgroup of the spin group associated to the fourth vertex of the Dynkin diagram of Figure

1, then one defines the ‘spinor 10-fold’ as the homogeneous variety S5 = Spin10(C)/P4 which

can be proved to be isomorphic to OG+
5

(V). Indeed, the parabolic subgroup P4 being maximal,

S5 has Picard number 1 with its Picard group spanned by an ample class denoted by H. More-

over, S5 is Fano with −KS5
= hD5

H where hD5
stands for the Coxeter number in type D5 (namely

hD5
= 8). Actually, −KS5

is very ample and the anticanonical linear system gives rise to an equi-

variant embedding ϕ : S5 ֒! P(S +) where S + ≃ H0(S5,−KS5

)∨
is a 16-dimensional Spin10(C)-

representation, one of the so-called half-spin representations S ±.14 Then it can be proved that

the second Veronese embedding of S5 ⊂ P(S +) ≃ P15 coincides with the image of OG+
5
(C5) in

P(∧5V) obtained by taking the image of its inclusion into the ordinary grassmannian of 5-planes

in V post-composed with the standard Plücker embedding G5(V) ֒! P(∧5V).

The half-spin representations are know to be minuscule representations: for ǫ = ±, the Weyl

group WD5
acts transitively on the set of weights Wǫ which is of cardinality 16. Each weight

space is a complex line and S ǫ admits a basis (v̟)̟∈Wǫ with v̟ being a weight vector of weight

̟ for any ̟ ∈ Wǫ . In other terms, there is a decomposition as a direct sum in which each weight

subspace is of dimension 1:

(7) S ǫ = ⊕̟∈WǫCv̟ .

The set of weights in Wǫ can be described quite explicitly as the set of 5-tuples ε/2 for all

ε = (εi)
5
i=1
∈ {±1}5 whose parity p(ε) = ε1 · · · ε5 ∈ {±1} coincides with ǫ. More explicitly,

denoting by (e1, . . . , e5) the standard basis of R5 ≃ hRD5
and setting eK =

∑
k∈K ek for any K ⊂ [[5]],

the elements ofW+ (resp. ofW−) are the vectors

(8) wL =
1

2

(
e[[5]]\L − eL

)

for all subsets L ⊂ [[5]] of even (resp. of odd) cardinal.

2.3.3. Wick’s embedding. As it is well known, a generic 5-plane in V can be represented by

a matrix MA =
[
Id5, A

] ∈ Mat5×10(C) where Id5 stands for the identity 5 × 5 matrix and A a

square matrix of the same size but arbitrary otherwise, the associated 5-plane to MA, denoted

by ζA =
〈
[Id5, A]

〉
, being the one spanned by the vectors whose coordinates (in the standard

coordinate system) are the given by the five lines of M. Then one verifies easily that the 5-plane

ζM is q-isotropic if and only if the matrix A is antisymmetric. Moreover, it can be proved that

for A, B ∈ Asym5(C) the two following facts are satisfied : (1) ζA and ζB belong to the same

components of OG5(V), that we choose to be OG+
5
(V); (2) ζA = ζB if and only if A = B. We then

14The two half-spin representations S + and S − are isomorphic, but not in a canonical way.
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have that the affine map

W̃ : Asym5(C) −! OG+5 (V)

is an embedding which induces a birational equivalence

(9) Asym5(C) ≃ OG+5 (V) ≃ S5 .

One can deduce from it a birational parametrization of the image of S5 in P(S +) ≃ P15, known as

the Wick’s parametrization, which is easily described using the following notations:

− for X ∈ Asym5(C) and i ∈ [[5]], we denote by Xı̂ the symmetric 4 × 4 matrix obtained by

deleting the i-th line and the i-th column from Y;

− Pf stands for the pfaffian of an antisymmetric matrix;

− for any i, j ∈ [[5]], xi j denotes the rational function on Asym5(C) associating the (i, j)-th
coefficient of an antisymmetric 5 × 5 matrix;

− let [[5]]2
< be the ordered set of pairs (i, j) such that 1 ≤ i < j ≤ 5, with the lexicographic

order. Then for k = 1, . . . , 10, one denotes by Xk the coordinate xi j if (i, j) is the k-th

element of [[5]]2
<: one has X1 = x12, X2 = x13, . . ., X9 = x35 and X10 = x45.

The projectivization

W =
[
Ŵ

]
: Asym5(C) −! P15(10)

of the affine map

Ŵ : Asym5(C) −! C16(11)

X =
(
xi j

)5
i, j=1 7−!

(
1 , X1 , . . . , X10 , Pf

(
X1̂

)
, . . . , Pf

(
X5̂

) )

is an affine parametrization of S5 ⊂ P15, known as Wick’s parametrization of the spinor variety.

It enjoys the nice property of having its components (as given in (11)) corresponding to the direct

sum decomposition of S + into weight subspaces: for each component C of Ŵ, there is a well-

defined weight w(C) ∈ W+ such that C is the composition of Ŵ with the linear projection onto the

weight subspace Cvw(C) (with respect to the decomposition in direct sum (7)). The weights w(C)

are given by the following formulas where we use the notation (8): one has

w(1) = w∅ , w(xi j) = w{i, j} and w
(
Pf

(
Xk̂

))
= w[[5]]\{k}

for all (i, j) ∈ [[5]]2
< and all k = 1, . . . , 5.

2.3.4. The action of the Cartan torus on S5 and a birational model of the associated torus

quotient. We now recall some results of Serganova and Skorobogatov about the action of the

Cartan torus HD5
of Spin10(C) on S5.

To simplify the notation, we write H instead of H5 below. Following Serganova and Sko-

robogatove, we denote by S
s f
5

the subset of points x ∈ S5 which are stable under the action of H
with stabilizer StabH(x) = Z

()
= {±1}. It is open in S5, and of codimension ≥ 2. One can prove

that it contains the points of S5 whose at most one of the 16 Wick coordinates vanish. In particular,

if Hw stands for the coordinate hyperplane in P(S +) given by the vanishing of the w-coordinate,

S
s f
5

contains the generic point of the coordinate hyperplane section S5 ∩ Hw.

From a direct application of GIT, one obtains that the following points hold:
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• the quotient Y5 = S
s f
5
/H is a 5-dimensional quasi-projective variety which is a Zariski-

open subset of the GIT quotient Y5 = S5//H. Moreover, the canonical map ν : S
s f
5

! Y5

is a geometric quotient: the preimages of ν are the H-orbits in S
s f
5

;

• for any weight w ∈ W+,

(12) Dw = ν
(
S

s f
5
∩ Hw

)

is an irreducible divisor in Y5, that we will call ‘the weight divisor of weight w;

• one has ν(S∗
5
) = Y∗5, where we have set

S∗5 = S5 \
( ⋃

w∈W+
Hw

)
and Y∗5 = Y5 \

( ⋃

w∈W+
Dw

)
.

Moreover, Serganova and Skorobogatov proved very nice results about the quasi-projective vari-

ety Y5:

• let T̂ be the character lattice of the diagonal subtorus T of GL(S +) generated by the 1-

parameter subgroup of scalar matrices C∗IdS + and the image of H by the natural embed-

ding Spin10(C) ⊂ GL(S +). Then there is a natural isomorphism of lattices T̂ ≃ PicZ
(
Y5

)

(see the very end of [SS]);

• the set
{

Dw
}
w∈W+ is the unique minimal set of Z>0-generators of the the semi-group of

effective divisor classes in PicZ
(
Y5

)
(see [Sk, Theorem 1.6]);

• it follows from [Sk, Theorem 2.2.2] that there is a canonical isomorphism of group

(13) WD5
≃ Aut

(
Y5

)
.

The variety Y5 is rational. We recall below the construction of the birational equivalence

C5 ≃ Y5 considered in [Pi5]. We will work with it further to get in explicit form the birational

realization of the Weyl group WD5
= Aut

(
Y5

)
induced by this birational identification.

The quotient of S5 by HD5
can be birationally identified with that of OG+

5
(C10) by the Cartan

torus H′D5
of SO5(C10), hence to the one of H = (C∗)5 on Asym5(C), where the action of the

latter torus is given by

A · h =
(
hih jAi j

)5

i, j=1

15

for any h = (hi)
5
i=1
∈ H = (C∗)5 and any A =

(
Ai j

)5
i, j=1 ∈ Asym5(C). Identifying C

(
Asym5(C)

)

with C(xi, j | 1 ≤ i < j ≤ 10) (where xi j stands for the map associating the (i, j)-th coefficient), one

can prove the

Proposition 2.1. 1. The algebra of rational functions on Asym5(C) invariant by the action ofH
is free and generated by the components of the rational map P5 : Asym5(C)d C5 given by



0 x1,2 x1,3 x1,4 x1,5

−x1,2 0 x2,3 x2,4 x2,5

−x1,3 −x2,3 0 x3,4 x3,5

−x1,4 −x2,4 −x3,4 0 x4,5

−x1,5 −x2,5 −x3,5 −x4,5 0


7−!

(
x4,5 x1,3

x1,5 x3,4
,

x1,5 x2,4

x1,2 x4,5
,

x1,2 x3,5

x1,5 x2,3
,

x2,3 x1,4

x3,4 x1,2
,

x3,4 x2,5

x2,3 x4,5

)
.

Consequently, P5 is a birational model of the quotient map ν : S5 d Y5.

15From a matricial point of view, it is more natural to see the action of (C∗)5 on Asym5(C) as a right-action, but

this is just a matter of notation.
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2. Moreover, the map P5 admits the following map as a rational section:

Y : y =
(

y13, y14, y24, y25, y35
)
7−! Y(y) =



0 1 y13 y14 1

−1 0 1 y24 y25

−y13 −1 0 1 y35

−y14 −y24 −1 0 1

−1 −y25 −y35 −1 0


,

i.e. setting C(y) = C(y13, y14, y24, y25, y35), one has P5 ◦ Y = IdC(y) (equality as rational maps).

Considering this proposition, let Y5 be the affine space C5 with the rational coordinates y1, . . . , y5

related to the yi j’s appearing in the definition of Y above, via the relations y1 = y13, y2 = y14,

y3 = y24, y = y25, y = y35. From the relation P5 ◦ Y = IdC(y), one deduces that the map Θ defined

by requiring that the following diagram of rational maps commutes

(14) Asym5(C)

P5

��

�

� W
// S5

ν

��

⊂ P
(
S +

)

Y5

Y

DD

Θ
// Y5 ,

is birational. We thus have a birational identification

(15) Θ : C5 = Y5
∼
d Y5

and it is the one we will always work with in what follows.

The weight divisors Dw in Y5 will be important for our purpose hence it is interesting to

investigate how they appear (or do not appear) on the birational model Y5. Remark first that

Y is polynomial hence so is the composition W ◦ Y : Y5 ! S5 ⊂ P(S +) ≃ P15. Viewed the

definition of the weight divisors in Y5, we get that their pull-backs under Θ are cut out by the

components of Ŵ ◦ Y . Since some of the entries of Y(y) are equal to 1, we see that some of the

weight divisors in Y5 have no pull-back as divisors in Y5 under Θ. Clearly, there are 10 divisors

in Y5 corresponding to some Dw’s, and these are the five coordinate hyperplanes {yi = 0} with

i = 1, . . . , 5, and the other five are given by the vanishing of the equations obtained by taking the

pfaffians of the 4 × 4 principal antisymmetric submatrices Y1̂, . . . , Y5̂ of Y(y). These subpfaffians,

denoted by Pi = Pf
(
Yı̂

)
for i = 1, . . . , 5, are given by:

P1 =1 + y25 − y24y35 , P2 = 1 + y13 − y35y14 , P3 = 1 + y24 − y14y25(16)

P4 = 1 + y35 − y13y25 , P5 = 1 + y14 − y13y24 .

Then setting

(17) ζ1 = y13 , ζ2 = y14 , ζ3 = y24 , ζ4 = y25 , ζ5 = y35 and ζi+5 = Pi for i ∈ [[5]] ,

we define Zk =
{
ζk = 0

} ⊂ Y5 for k = 1, . . . , 10 and one sets

(18) Z = ∪10
k=1Zk =

{
ζ1 · · · · · ζ10 = 0

}
and Y∗5 = C5 \ Z .

One verifies easily the

Proposition 2.2. The map Θ is defined at every point of Y∗
5

and sends it into Y∗5. Actually, one
has Θ(Y∗5) = Y∗5 and the restriction Θ|Y∗

5
induces an isomorphism from Y∗5 onto Y∗5.
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2.3.5. Del Pezzo quartic surfaces and Serganova-Skorobogatov embeddings. The geometry

of a del Pezzo quartic surface (and in particular the geometry of the lines contained in it) is related

in a nice way to that of the spinor tenfold S5 and of its torus quotient Y5. This is important for our

purpose and because it also allows a convenient way to work with the weights of the minuscule

representation S +, we recall it now.

Let dP4 be a fixed smooth del Pezzo surface. In finitely many ways (none of which more

canonical than the others), it is isomorphic to the total space X = BlP(P2) of the projective plane

along a subset P = {p1, . . . , p5} of five points pi in general position in P2. There are 16 lines in

X and each can be identified with its class in PicZ(X). If ei stands for the class of the exceptional

divisor over pi in the blow-up β = βP : X = BlP(P2) ! P2 along P (for any i ∈ [[5]], and if h
denotes the class of β−1(ℓ) for any line ℓ ⊂ P2 \P, then the Picard lattice PicZ(X) is freely spanned

over the integers by the ei’s and h and the the (classes of) lines in X are the following:

ei , h − ei − e j and 2h − etot ,

with i and j distinct and ranging in [[5]], where we use the notation etot =
∑5

k=1 ek. We will denote

by LX the set of lines contained in X, viewed as a subset of the Picard lattice of X.

As is well-known, the lines of X can be put in a 1-1 relation with the weights in W+. Let us

recall how it goes: let R be the orthogonal, for the intersection product, of the canonical class

KX = −3h + etot in the Picard group Pic(X) = PicZ(X) ⊗ R. Endowed with the opposite of the

(restriction of the) intersection product, R becomes a ‘root space of type D5’: it is Euclidean and

admits as a basis the following five ‘fundamental roots’

ρi = ei+1 − ei
(
i = 1, . . . , 4

)
and ρ5 = h − e1 − e2 − e3 .

Denote by Π : Pic(X) ! R the orthogonal projection (whose kernel is 〈K〉 = R⊥. Let ( fi)
5
i=1

be the other basis of R determined by the relations fi − fi+1 = −ρi = ei − ei+1 for i = 1, . . . , 4 and

f4 + f5 = ρ5, and let

(19) ψ : R −! R5,

5∑

i=1

ui fi 7−! (ui)
5
i=1

be the associated isomorphism. Then the linear map µ = ψ ◦Π : Pic(X) ! R5 induces a bijection

(20) µ : LX ≃ W+

from the set of lines in X onto the set of weights of S + which is explicitly given by

µ(ei) = w[[5]]\{i} , µ(h − ei − e j) = w{i, j} and µ(2h − etot) = w∅ ,

for all i, j ∈ [[5]] distinct.

The previous bijection LX ≃ W+ can be used to compute the action of the Weyl group WD5

on the weights of S +. Indeed, building a graph with the i-th vertice corresponding to ρi and an

arrow between two vertices with labels i and j if and only if the two corresponding roots satisfy

(ρi, ρ j) = 1, one exactly gets the labeled Dynkin diagram of Figure 1. Then for any i = 1, . . . , 5,

one considers the map

(21) si = sρi : d 7! d + (ρi, d) ρi .

One verifies that it is an involutive automorphism of
(
Pic(X), (·, ·)) letting KX invariant, hence it

gives rise to an orthogonal involution of R. The si’s satisfy the relations (6) so what we have
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obtained is a concrete realization of the Weyl group WD5
, previously abstractly defined as a sub-

group of O(R) (in particular, this justifies having denoted by si the map (21)). This will allow us

to compute in an explicit way the action of WD5
on the setW+ of weights of S +. As an example,

we treat the case of s1. Via (21), it acts linearly on Pic(X) and is fully determined by indicating

that it exchanges e1 and e2 and lets all the other generators e3, e4, e5 and h unchanged. We deduce

that its action on LX ≃ W+ is given by

(22) w[[5]]\{1} ↔ w[[5]]\{2} and w{1,k} ↔ w{2,k}

with k = 3, 4, 5, with the convention that the exchanges above (indicated by the double arrow ↔)

are the only non-trivial actions of si on the set of weights.

⋆

The 1-1 correspondence between LX and W+ actually can be given a geometric origin. We

denote by L = ∪ℓ∈Lℓ with the lines viewed as subsets of X, and we set X∗ = X \ L.

For any line ℓ ⊂ X, let σℓ be a generator of the 1-dimensional space of global sections

H0(X,OX(ℓ)) and let us consider the map σ̂ : X d S + the w-component of which, for any

weight w ∈ W+, is given by the section σℓ for the line ℓ which corresponds to w up to the bijec-

tion µ : LX ≃ W+ discussed above: σ̂L =
(
σµ−1(w)

)
w∈W+ . This map becomes a morphism when

restricted to X∗ and is well-defined up to post-composition by an element of the diagonal torus of

GL(S +). We claim that there is a way to chose the components σℓ such that the projectivisation

(23) FL =
[
σ̂L

]
: X∗ ! P(S +)

has values in S∗
5
. Moreover, this map extends to a well-defined morphism from X to S

s f
5

denoted

the same. For any weight w ∈ W+, let Hw be the coordinate hyperplane in P(S +) corresponding

to the vanishing of the affine w-coordinate (with respect to the decomposition in direct sum (7)).

Then one has F−1
L

(
Hw(ℓ)

)
= ℓ for any line ℓ ∈ L, which gives a geometric explanation to the

bijection (20).

It can be proven that the composition ν ◦ FL makes commutative the following diagram

(24) S
s f
5

ν

��

⊂ P
(
S +

)

X

FL
11

fSS
// Y5

where the map fSS : X ! Y5 is an embedding which has been introduced (in a non-constructive

way) by Serganova and Skorobogatov in [SS] (hence the two S ’s in the notation fSS ). In addition

to being an embedding, fSS satisfies several nice properties, such as the fact that the preimage

of a weight divisor of Y5 is the line in X corresponding to the weight16 or that it induces an

isomorphism of Picard lattices f ∗SS : PicZ
(
Y5

) ≃ PicZ(X) ≃ Z6.

For our purpose, we need to make explicit the rational map FL ◦ β−1 : P2
d S5, or rather its

birational model

GL = W−1 ◦ FL ◦ β−1 : P2
d Asym5(C) .

16In mathematical terms: for any weight w ∈ W+, one has f −1
SS (Dw) = ℓ ⊂ X, where ℓ stands for the line such that

µ(ℓ) = w.
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Assume that X is the blow-up of P2 in five points pi which, with respect to the standard homoge-

neous coordinates, are the vertices of the standard simplex for p1, . . . , p4, and with p5 = [a : b : 1]

where a, b are two complex numbers only assumed to be such that ab(a − 1)(b − 1)(a − b) , 0

(this to ensure that the pi’s are in general position in P2). In [Pi5], we have established that the

expression of GL in the affine coordinates x, y is given by

GL(x, y) =
1

Cab



0 −b − a − (a + 1) y (1 − y) a y − b
b + a 0 −x (1 + b) (1 − x) b x − a

(a + 1) y x (1 + b) 0 y − x bx − ay
(y − 1) a (x − 1) b x − y 0 (b − 1)x + (1 − a)y − b + a

b − y a − x ay − bx (1 − b)x + (a − 1)y + b − a 0



where Cab = (a − b) xy + b (1 − a) x + a (b − 1) y is an affine quadratic polynomial which cuts out

the (affine part of the) conic passing through the points p1, . . . , p5.

In the considerations above, a and b are fixed parameters, but it makes sense and it is interesting

to let them vary. Doing this, GL is seen as a rational map from C4 (with affine coordinates x, y, a, b)

onto Asym5(C), that we will denote simply by G. This map can be considered as a birational

model of a putative rational map G : dP4 d S5 ⊂ P(S +), where the source space is the ‘universal

surface dP4 over the moduli space MdP4 (birational to P2) of quartic del Pezzo surfaces’, such

that the restriction of G along a fiber of dP4 !MdP4 birationally coincides with the map (23) of

the corresponding del Pezzo quartic surface.

In the putative setting considered above, post-composing G with the quotient mapping S5 d

Y5 would give a map F : dP4 d Y5 whose restriction along the fibers of the universal del Pezzo

quartic surface would coincide with Serganova-Skorobogatov’s embedding of the surface. The

well-defined rational map

(25) F = (Fi)
5
i=1 = P5 ◦G : C4

d C5

can be thought of as a birational model of F . Its components Fi ∈ C(x, y, a, b) are the following

ones:

F1 =
(ay − bx − a + b + x − y) (a + 1) y

(b − y) (−y + x)

F2 =
x (b + 1) (y − 1) a

(−y + x) (b + a)

F3 =
(b − y) (−1 + x) b

(b + a) ((1 − x) b + x + (y − 1) a − y)

F4 =
(−y + x) (a − x)

x ((1 − x) b + x + (y − 1) a − y) (b + 1)

and F5 =
(b + a) (ay − bx)

(b − y) x (b + 1)
.

Since for any del Pezzo quartic surface, the preimages by the associated map fSS of the 16

weight divisors Dw = ν
(
Hw ∩ Ss f

5

)
are the 16 lines of the del Pezzo surface, one can expect

something similar for the map F. And this does occur in a way. Indeed, the divisor Z in Y5 has

only 10 components, but it can be verifies that the preimage of Z = {ζF =
∏10

i=1 ζi = 0} by F has

16 hypersurface components somehow. More precisely, one verifies that the support of the divisor

cut out by ζZ(F) =
∏10

i=1 ζi(F) = 0 in C4 has 15 irreducible components, namely the irreducible
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affine hypersurfaces cut out by the following polynomials in the variables x, y, a and b:

x , y , x − 1 , x − a , y − 1 , y − b , x − y , bx − ay , a , a + 1 , b , b + 1 , b + a ,

ab(x − y) − (a − b)xy + ay − bx , (a − 1)y − (b − 1)x − a + b .

Together with the hyperplane at infinity in a compactification C4 ⊂ P4, this makes 16 irreducible

divisors in total, which correspond to the 16 weight divisors Dw (with w ∈ W+) of Y5. We will

not really use this below, but we wanted to stress this fact which indicates that the coordinates

x, y, a, b and the map F are well-adapted to study Y5 from a birational point of view.

2.3.6. The birational action of WD5
. Conjugating the isomorphism (13) by the birational iden-

tification (15) gives rise to a birational representation of the Weyl group WD5
into the Cremona

group Bir(C5) of birational transformations of C5. Our goal here is to make this representation

explicit.

Recall that WD5
= N/HD5

where N = NSpin10(C)
(
HD5

)
stands for the normalizer of HD5

in the

spin group. From the proof of Theorem 2.2 in [Sk], we know that the action of an element w ∈
WD5

on Y5 is induced by the one of a lift ŵ in the normalizer. Recall that w acts by permutations

and transitively on the set of lines L and acts also naturally on the set of weights W+. Moreover,

since the bijection (20) is WD5
-equivariant (as an easy verification shows), one deduces a natural

(but naive) lift for w, namely the linear map w̃ on S + defined requiring that it acts by permuting

the element of the weight basis (v̟)̟∈W+ of S + (see (7)) according to the weight, i.e. one has

w̃(v̟) = vw(̟) for any weight ̟. However it is not the case that this lift belongs to the normalizer

of the Cartan torus. Indeed, it is by no mean canonical, it actually depends on the chosen weight

basis (v̟)̟∈W+ . Since each v̟ is only well-defined up to multiplication by a non-zero scalar, we

look for a lift ŵ acting as v̟ 7! λ̟w · vw(̟) with λ̟w ∈ C∗ for any ̟.

Let us apply this strategy to the first generator s1 of WD5
. Let us first consider s̃i, which stands

for the ‘dumb lift’ of s1 mentioned above. Given η = Ŵ(X) for

X =



0 x12 x13 x14 x15

−x12 0 x23 x24 x25

−x13 −x13 0 x34 x35

−x14 −x14 −x34 0 x45

−x15 −x15 −x35 −x45 0


∈ Asym5(C) ,

generic, one easily deduces from (22) the weight coordinates of L̃1(η) = (s̃i ◦W)(X) : one has

η =
(
1, x12 , x13 , x14 , x15 , x23 , x24 , x25 , x34 , x35 , x45 , Pf(X1̂) , Pf(X2̂) , Pf(X3̂) , Pf(X4̂) , Pf(X5̂)

)

and L̃1(η) =
(
1, x12 , x23 , x24 , x25 , x13 , x14 , x15 , x34 , x35 , x45 , Pf(X2̂) , Pf(X1̂) , Pf(X3̂) , Pf(X4̂) , Pf(X5̂)

)

(the coordinates which have been permuted in s̃1(η) are in blue). The transformation η 7! L̃1(η)

is induced by an invertible linear map L̃1 of S + (which permutes the coordinates in blue) which

however is not an element of the image of the spin group in GL(S +) since it can be verified that

L̃1(S5) 1 S5. Then let L1 ∈ GL(S +) be obtained from L̃1 by post-composing it with a diagonal

matrix: there are non-zero complex numbers λk for k = 0, . . . , 5 and λi j for (i, j) ∈ [[5]]2
< such that

L1 is entirely characterized by the fact that one has

L1(η) =
(
λ0, λ12 x12 , λ13 x23 , λ14 x24 , λ15 x25 , λ23 x13 , λ24 x14 , λ25 x15 , λ34 x34 , λ35 x35 , λ45 x45 ,

λ1 Pf
(
X2̂

)
, λ2 Pf

(
X1̂

)
, λ3 Pf

(
X3̂

)
, λ4 Pf

(
X4̂

)
, λ5 Pf

(
X5̂

))
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for η = Ŵ(X) with X generic. Since post-composing by an element of the Cartan torus is irrel-

evant, there is no loss in generality by assuming that λk = 1 for k = 1, . . . , 5. That L1 belongs

to the normalizer of HD5
in the spin group implies in particular that L1 stabilizes S5. Setting

Λ = { λ0 } ∪
{
λi j | 1 ≤ i < j ≤ 5

}
and

X =
1

λ0



0 λ12 x12 λ13 x23 λ14 x24 λ15 x25

−λ12 x12 0 λ23 x13 λ24 x14 λ25 x15

−λ13 x23 −λ23 x13 0 λ34 x34 λ35 x35

−λ14 x24 −λ24 x14 −λ34 x34 0 λ45 x45

−λ15 x25 −λ25 x15 −λ35 x35 −λ45 x45 0



the condition L1(S5) = S5 is equivalent to the fact that the following pfaffian relations are satisfied

for any generic (hence for any) matrix X ∈ Asym5(C):

(26) Pf
(
X1̂

)
= Pf

(
X2̂

)
, Pf

(
X2̂

)
= Pf

(
X1̂

)
and Pf

(
X ŝ

)
= Pf

(
Xŝ

)
for s = 3, 4, 5 .

These relations are polynomial identities in the indeterminates xi j with 1 ≤ i < j ≤ 5 whose

coefficients are rational expressions in the elements of Λ. Assuming that all these coefficients are

zero corresponds to a system of polynomial equations in the λ’s which is not difficult to solve.

One obtains that the matrix X is necessarily the following one:

i



0 x12 x23 x24 x25

−x12 0 x13 x14 x15

−x23 −x13 0 −x34 −x35

−x24 −x14 x34 0 −x45

−x25 −x15 x35 x45 0


.

The Cremona map σ1 induced by s1 is given by P5
(
Y
)

where P5 and Y are given in Proposition

2.1. More explicitly, for y = (y13, y14, y24, y25, y35), one has

σ1(y) = P5

(
Y(y)

)
= P5





0 1 y13 y14 1

−1 0 1 y24 y25

−y13 −1 0 1 y35

−y14 −y24 −1 0 1

−1 −y25 −y35 −1 0




= P5


i



0 1 1 y24 y25

−1 0 y13 y14 1

−1 −y13 0 −1 −y35

−y24 −y14 −1 0 −1

−y25 −1 y35 1 0




.

One obtains eventually that σ1 is the following involutive Cremona transformation:

(27) σ1 : y 7−!

(
1

y25
, −y24y13 , −y14y25 ,

1

y13
, − y35

y13y25

)
.

Proceeding in a similar way for each of the four other generators s2, s3, s4 and s5 of WD5
, one

obtains the following explicit formulas for the Cremona transformations σi induced by them:

σ2 : y 7−!

(
1

y24
, − y14

y24y13
,

1

y13
, −y35y24 , −y13y25

)

σ3 : y 7−!

(
−y14y35 , −y24y13 ,

1

y35
, − y25

y35y24
,

1

y24

)
(28)

σ4 : y 7−!

(
− y13

y35y14
,

1

y35
, −y14y25 , −y24y35,

1

y14

)

σ5 : y 7−!

(
−P2 , y14

P1

P3
, −y24

P3
, −y25

P1
, y35

P3

P1

)

(where in the formula for σ5, the Pi’s stand for the sub-pfaffians defined in (16)).
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Proposition 2.3. The map si 7−! σi for i = 1, . . . , 5 gives rise to an embedding of groups

(29) WD5
=

〈
s1, . . . , s5 〉 −! Bir

(
C5)

which corresponds to Skorobogatov’s isomorphism WD5
≃ Aut

(
Y5

)
up to the birational identifi-

cation (15).

Proof. Actually, this follows from [Sk, Theorem 2.2] since the formulas above for the σi’s have

been obtained by following, in the specific case under scrutiny and working in a explicit manner,

the proof given by Skorobogatov in his paper.

But that the proposition holds true can also be verified as follows: to ensure that (29) indeed

induces a morphism of group, it suffices to verify that the Cremona transformations σ1, . . . , σ5

satisfy all the relations (6) satisfied by the generators si of WD5
. Using the explicit expressions

for the σi’s given above, this is something straightforward to check. Using a computer algebra

system, there is no difficulty to show that the σi’s generate a finite subgroup of Bir(C5) with 1920

elements. Since this is precisely the order of WD5
, it follows that the morphism of groups (29) is

injective. �

We will denote by WD5
the subgroup of Bir

(
C5) generated by the σi’s:

(30) WD5
≃ WD5

=
〈
σ1, . . . , σ5

〉 ⊂ Bir
(
C5) .

Remark 2.4. The birational realization WD5
of the Weyl group WD5

seems to be new.

Because WD5
acts by permuations (and transitively) on the set of weights W+ of S +, it acts

also (in exactly the same way) on the set of coordinate hyperplanes
{

Hw
}
w∈W+ hence on the set

of weight divisors
{

Dw
}
w∈W+ ⊂ PicZ(Y) as well. For w ∈ WD5

, denote by ϕw the corresponding

automorphism of Y . Then for any weight w and any w ∈ WD5
, one has ϕw(Dw) = Dw(w) from

which it follows that ϕw induces an automorphism of Y∗5. Combined with Proposition 2.2, this

gives us

Proposition 2.5. For any i = 1, . . . , 5, the Cremona transformation σi is defined on Y∗
5
= C5 \ Z5

and gives rise to an automorphism of the pair (C5, Z5). Consequently, the image WD5
of the group

embedding (29) is a subgroup of Bir
(
C5) ∩Aut(C5 \ Z5).

3. The Gelfand-MacPherson webWGM

Y5

and its abelian relations

This is the main section of the paper, in which we study the webWGM
Y5

, in particular its abelian

relations, which we make explicit and determine their invariance properties relative to the action

of the Weyl group WD5
.

3.1. The webWGM

Y5

in coordinates. We use here some results of [Pi5, §4.5] to which we refer

the reader for more details.

The moment polytope of the spinor tenfold, denoted by ∆D5
, is the 5-demihypercube, realized

in hD5
≃ R5 as the convex envelope of W+. It has 10 + 24 = 26 facets (= faces of codimension

1): 10 are 4-demihypercubes, the 16 other being 4-simplices. The former are facets of type D4,

the latter of type A4 (see [Pi5, Fig. 1]). Seeing ∆D5
as the convex envelope of lines in the Picard

lattice of a given smooth del Pezzo surface X = dP4, and seeing the facets as determined by their
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set of vertices, the facets of type A4 are in correspondence with the description of X as a blow-up

of P2 in 5 points, the five corresponding exceptional divisors on dP4 being the vertices of the

corresponding facet. As for the facets which are demihypercubes, they correspond to the conic

fibrations on X, the vertices of each such facet being the irreducible components (lines) of the

non-irreducible fibers of the fibration.

Working in R5 by means of the isomorphism (19), then first one has that Ψ(W+) is the set of

5-uplets 1
2
ǫ with ǫ = (ǫi)

5
i=1
∈ {±1}5 even in the sense that ǫ1 · · · ǫ5 = 1. Then it can be verified

that the facets of type A4 are given by intersecting ∆D5
with the affine hyperplanes cut out by∑5

i=1 εixi = 3/2 for all ε = (εi)
5
i=1
∈ {±1}5 which are odd (that is such that ε1 · · · ε5 = −1). As

explained in [Pi5], the A4-facets of ∆D5
are ‘web-irrelevant’ and have not to be considered further.

The 10 demihypercubical facets are the intersections ∆ǫ
5,i = ∆D5

∩ { xi = ǫ/2 } for i = 1, . . . , 5

and ǫ ∈ {±1}. These 10 facets are ‘web-relevant’ and from the material of [Pi5, §4.5] (in particular

Figure 1 therein), we can see that the face map associated to the facet ∆ǫ
5,i is a dominant rational

map w : Πǫi : S5 d S4. Here the target space S4 is the ‘spinor 6-fold’: it is the homogeneous

space of type (D4, ω4). Identifying P7 with the projectivization of C ⊕ Asym4(C) ⊕ C ≃ C8, the

spinor 6-fold admits an affine parametrization à la Wick given by

W4 : Asym4(C) ֒! S4 ⊂ P7

M 7−!

[
1 : M : Pf(M)

]
,

from which it follows that S4 is isomorphic to the smooth hyperquadric Q6 ⊂ P7.

As for the expressions of the face mapsΨǫi read in the antisymmetric matricial charts associated

to Wick’s parametrizations of the two corresponding spinor manifolds, there is a simple (and nice)

formula when ǫ = +1: for i ∈ [[5]], one has

Φ̃+i = W−1
4 ◦ ψ+i ◦W5 : Asym5(C)d Asym4(C)

A 7−! Aı̂

where Aı̂ stands for the 4×4 antisymmetric matrix obtained from A by deleting its i-th line and its

i-th column. One can give formulas for the maps Φ̃−i read in Wick’s charts (see [Pi5, Prop. 4.17]),

but none as nice as the one above for the Φ̃+i .17

From the explicit formulas in Wick’s charts for the face maps, one easily gets some formulas

for some birational models of the HD5
-equivariant quotient π±i : Y5 d Y4 of the face maps Π±i .

Let us denote by WGM
Y5

the pull-back ofWGM
Y5
=W

(
π±i

)
i∈[[5]] under the birational map (15):

WGM
Y5
= Θ∗

(
WGM
Y5

)
.

Explicit first integrals for WGM
Y5

have been given in [Pi5]. For i = 1, . . . , 5, let Fi (resp. Fi+5) be

the foliation on Y5 induced by π+i ◦ Θ (resp. by π−i ◦ Θ).

17The reason behind the dichotomy for the formulas of the face maps Φ̃±i read in matricial charts is that the target

spaces of the Φ̃+i ’s are naturally identified with S4 embedded in P(S +4 ) whereas the images of the Φ̃−i ’s naturally live in

the projectivization P(S −4 ) of the other half-spin representation of Spin8(C). See [Pi5, §4.5.2] for more details.
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Proposition 3.1. The following rational functions are first integrals of the foliations Fi:

U1 =

(
y25 , y24y35

)
U6 =

( y14y35 − y13 − 1

y14 (y13y25 − y35 − 1)
,

y13 (y14y25 − y24 − 1)

y14 (y13y25 − y35 − 1)

)

U2 =

(
1

y13
,

y14y35

y13

)
U7 =

( y24y35 − y25 − 1

y24 (y13y25 − y35 − 1)
,

y14y25 − y24 − 1

y24 (y13y25 − y35 − 1)

)

U3 =

(
y24 , y14y25

)
U8 =

(y13 (y24y35 − y25 − 1)

y13y25 − y35 − 1
,

y14y35 − y13 − 1

y13y25 − y35 − 1

)
(31)

U4 =

(
1

y35
,

y13y25

y35

)
U9 =

( y14 (y24y35 − y25 − 1)

y14y25 − y24 − 1
,

y24 (y14y35 − y13 − 1)

y14y25 − y24 − 1

)

U5 =

(
y14 , y13y24

)
U10 =

( y24y35 − y25 − 1

y35 (y14y25 − y24 − 1)
,

y25 (y14y35 − y13 − 1)

y35 (y14y25 − y24 − 1)

)
.

The choice of the specific first integrals above is motivated by the fact that it will induce nice

forms for the abelian relations of WGM
Y5

we will deal with. For describing the ARs of WGM
Y5

, it is

convenient to introduce a ‘third component’ to the first integral Ui =
(
Ui,1,Ui,2

)
. One sets

(32) Ui,3 = 1 + Ui,1 − Ui,2

for i = 1, . . . , 10 and via straightforward computations, one gets:

U1,3 = − y24y35 + y25 + 1 U6,3 =
y13y24 − y14 − 1

(y13y25 − y35 − 1) y14

U2,3 =
−y14y35 + y13 + 1

y13
U7,3 =

y25 (y13y24 − y14 − 1)

y24 (y13y25 − y35 − 1)

U3,3 = − y14y25 + y24 + 1 U8,3 =
y35 (y13y24 − y14 − 1)

y13y25 − y35 − 1
(33)

U4,3 =
−y13y25 + y35 + 1

y35
U9,3 =

y13y24 − y14 − 1

y14y25 − y24 − 1

U5,3 = − y13y24 + y14 + 1 U10,3 =
y13y25 − y35 − 1

y35 (y14y25 − y24 − 1)
.

The most important property which the Ui,s’s for i = 1, . . . , 10 and s = 1, 2, 3 satisfy is given

by the

Lemma 3.2. Up to a sign, any Ui,s can be written as the product of some factors of the form ζ±1
k ,

where the ζk’s are the affine polynomials on Y5 = C5 defined in (17).

The five first functions Ui define a subweb ofWGM
Y5

which will be of great interest for us. This

web will be denoted by WGM
Y5

, it is defined by simple monomial first integrals: one has

(34) W+Y5
=W

( (
y25 , y24y35

)
,

(
1

y13
,

y14y35

y13

)
,
(

y24 , y14y25

)
,

(
1

y35
,

y13y25

y35

)
,
(

y14 , y13y24

) )
.

⋆

Essentially all the results to come have been obtained my means of explicit computations using

the explicit expressions above for the first integrals of the webs we will consider. For this reason,

all our results will be stated for the birational models WGM
Y5

and W+Y5
but are of course valid for

their geometric avatarsWGM
Y5

andW+
Y5
=W

(
π+i

)
i∈[[5]] as well.
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3.1.1. Ranks. Determining the virtual ranks of a c-codimensional web W defined by rational

first integrals depending on n variables, amounts to computing the rank of certain vector spaces

defined over C(u1, . . . , un), where the ui’s are to be regarded as the affine coordinates of the generic

point of Cn.

As for the k-abelian relations ofW, for any k = 0, . . . , c, they correspond to the solutions of a

linear differential system (which is not difficult to make explicit), and which is of finite type when

the corresponding virtual rank is finite. In such cases, a computational approach similar to the

one described in [Pi2, §1.5] can be employed to determine the k-rank of the web.

The methods just outlined for computing the virtual or actual k-rank of a given web can be

implemented in a computer algebra system. This provides computationally effective techniques

for determining these invariants.18 Using these, one easily computes all the ranks of the web

WGM
Y5

:

Proposition 3.3. 1. One has

ρ•0
(
WGM

Y5

)
= (15, 15, 10, 1) ρ•1

(
WGM

Y5

)
= (15, 20, 15, 2) ρ•2

(
WGM

Y5

)
= (5, 5, 1)

r0

(
WGM

Y5

)
= 25 r1

(
WGM

Y5

)
= 35 r2

(
WGM

Y5

)
= 11 .

In particular, Gelfand-MacPherson’s web WGM
Y5

has AMP 2-rank.

2. One has

ρ•0
(
W+Y5

)
= (5) ρ•1

(
W+Y5

)
= (5, 1) ρ•2

(
W+Y5

)
= (1)

r0

(
W+Y5

)
= 5 r1

(
W+Y5

)
= 6 r2

(
W+Y5

)
= 1 .

In particular, the 5-web W+Y5
has AMP k-rank for k = 0, 1, 2.

3.1.2. The master 2-abelian relation HLOGY5
of WGM

Y5
. Given three variables u1, u2 and u3

with the last one expressing in terms of the first two by u3 = 1 + u1 − u2, one considers the

following ’logarithmic’ 2-form on C3

(35) Ω = ln u1 d ln u2 ∧ d ln u3 − ln u2 d ln u1 ∧ d ln u3 + ln u3 d ln u1 ∧ d ln u2

that is

(36) Ω = ln u1

(
du2 ∧ du3

u2u3

)
− ln u2

(
du1 ∧ du3

u1u3

)
+ ln u3

(
du1 ∧ du2

u1u2

)
,

or even more explicitly, setting x = u1 and u2 = y:

Ω =

(
− ln u1

u2u3
+

ln u2

u1u3
+

ln u3

u1u2

)
du1 ∧ du2

=

(
ln (1 + x − y)

xy
+

ln (y)

x(1 + x − y)
− ln

(
x
)

y(1 + x − y)

)
dx ∧ dy .(37)

18Maple worksheets for computing the k-ranks of webs in an arbitrary number of variables are available from the

author upon request.
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Let I be the hypercube formed by 5-tuples (yi)
5
i=1
∈]0, 1[5 and denote by U an arbitrary but

fixed open domain containing it. Since the five pfaffian determinants P1, . . . , P5 (cf. (16)) are

positive on I, it follows that the same occurs for the Ui,s for all i = 1, . . . , 10 and s = 1, 2, 3.

One sets

(38)
(
ǫi
)10
i=1 =

(
1,−1, 1,−1, 1, 1,−1, 1,−1, 1

)
.

Proposition 3.4. The following differential relation is identically satisfied onU:

(

HLOGY5

)

10∑

i=1

ǫi U∗i
(
Ω
)
= 0 .

Consequently, the 10-tuple
(
ǫiU
∗
i (Ω)

)10
i=1 can be seen as a 2-abelian relation for WGM

Y5
, again

denoted by HLOGY5
.

Proof. By formal elementary computations, one can express the scalar components of the sum

Θ =
∑10

i=1 ǫi U∗i
(
Ω
)

in the basis dyi ∧ dy j with i, j such that 1 ≤ i < j ≤ 5. For instance,

the dy1 ∧ dy2-component Θ12 =
(
∂y1
∧ ∂y2

)
yΘ is a sum of terms of the form R(y) ln M with

R(y) ∈ C(y) and where M is a monomial in the ζk’s defined in (17). Since these quantities are

positive on I, using the functional equation of the logarithm, one can express Θ12 as a linear

combination in the ln ζk’s with coefficients in C(y). Straigtforward formal computations give that

all these coefficients actually vanish, hence Θ12 ≡ 0 on I. Proceeding similarly for all the other

components of Θ, one gets that it vanishes identically on I hence on the complex domain U. �

From the presence of logarithms in the definition of Ω, it follows that HLOGY5
is not a global

AR for WGM
Y5

but a multivalued one, with additive monodromy. Hence one has to be a bit care-

ful when wondering about the invariance property of ‘the abelian relation’ HLOGY5
under the

birational action of WD5
on Y5. There are two approaches for circumventing this non important

technical issue.

The first one is to restrict to the reals and to deal with the real web W̃
GM
Y5

on Ỹ
∗
5 = R5 \ Z. One

considers the following real-analytic version of Ω:

Ωω = ln
∣∣∣ u1

∣∣∣
(
du2 ∧ du3

u2u3

)
− ln

∣∣∣ u2

∣∣∣
(
du1 ∧ du3

u1u3

)
+ ln

∣∣∣ u3

∣∣∣
(
du1 ∧ du2

u1u2

)

=

(
ln | 1 + x − y |

xy
+

ln | y |
x(1 + x − y)

− ln | x |
y(1 + x − y)

)
dx ∧ dy .

The scalar components of
∑10

i=1 U∗i
(
Ωω

)
are linear combinations of the quantities ln|ζk |’s with

coefficients in R(y) which can easily be computed. One obtains the

Proposition 3.5. The following differential relation

(

HLOGω
Y5

)

10∑

i=1

ǫi U∗i
(
Ωω

)
= 0

is identically satisfied on Y5 hence
(
ǫi U∗i

(
Ωω

))10

i=1
, which will be again denoted by HLOGω

Y5
, can

be considered as a global real-analytic 2-AR either for WGM
Y5

or for its real version W̃
GM
Y5

.
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Since it is global, it now does make sense to consider the invariance properties of HLOGω
Y5

with respect to the action of WD5
≃ WD5

on Y5 or on Ỹ5. But this is also possible when sticking

to the holomorphic setting, following a similar approach to the one described in [Pi3, p. 96].

Indeed, as it follows from the description of the ARs of WGM
Y5

(see further), the local system

AR2 = AR2(WGM
Y5

)
of 2-ARs of WGM

Y5
(on Y∗

5
) admits a 1-step ‘weight filtration’ F•AR2, with

F1AR2 = AR2 and where F0AR2 = AR2
Rat

(
WGM

Y5

)
is the vector space of rational ARs of WGM

Y5
.

Then Gr1AR2 is of dimension 1 and the multivalued abelian relation HLOGY5
gives rise to a

generator of this space. It is easy to see that the birational action of WD5
on Y5 induces a linear

action on the associated graded space

Gr•AR2 = AR2
Rat

(
WGM

Y5

) ⊕ Gr1AR2 .

Let us now discuss how the Cremona transformations σi acts on HLOGY5

Proposition 3.6. 1. As elements of AR2(WGM
Y5

)
, one has σ∗i

(
HLOGω

Y5

)
= −HLOGω

Y5
for any i =

1, . . . , 5. Hence HLOGω
Y5

spans a 1-dimensional non-trivial WD5
-subrepresentation of AR2(WGM

Y5

)

which necessarily is the signature representation.

2. There is a similar statement for the linear action of WD5
on Gr•AR2: the complex line Gr1AR2

spanned by HLOGY5
is WD5

-stable and is the signature representation.

Proof. For i = 1, . . . , 5, one sets HLOGω
i,+ =

(
Ui,1

)∗(
Ωω

)
and HLOGω

i,− =
(
Ui,2

)∗(
Ωω

)
. Then by

direct elementary computations, using the explicit expressions of the σi’s given above, one easily

establish the following transformation formulas:

• for k ∈ {1, 2, 3, 4}, one sets νk = (k, k + 1) ∈ S5. Then for i = 1, . . . , 5 and ǫ = ±, one has:

(39) σ∗k
(
HLOGω

i,ǫ

)
= −HLOGω

νk(i),ǫ ;

• let ν5 be the transposition exchanging 4 and 5 (i.e. ν5 = ν4). Then for j ∈ {1, 2, 3},
ℓ ∈ {4, 5} and ǫ = ±, one has:

(40) σ∗5
(
HLOGω

j,ǫ

)
= −HLOGω

j,ǫ and σ∗5
(
HLOGω

ℓ,ǫ

)
= −HLOGω

ν5(ℓ),−ǫ

It follows that 〈HLOGω
Y5
〉 is WD5

-stable. Since this 1-dimensional representation is not trivial, it

has to be the signature.

The proof of the second point of the proposition is essentially similar. �

Remark 3.7. The components of HLOGY5
are linear combinations of logarithms of rational

functions, multiplied by wedge products of total derivatives of terms of the same type. Such
differential forms have already appeared in earlier works on polylogarithms and the functional
equations they satisfy. For instance, see our previous work [Pi3] on the curvilinear webs defined
by the n + 3 forgetful maps on the moduli spaces M0,n+3 (in particular, refer to formulas (5.61)
and (5.65) therein). See also [KLL]19 where polylogarithms are studied from the perspective of
the theory of algebraic cycles and reciprocity laws.

It would be of interest to gain a deeper understanding of the nature of such differential forms
and to clarify why they naturally emerge in the context of functional identities and abelian rela-
tions.

19More precisely, see the first line of page 157 in [KLL]
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3.2. The rational 2-abelian relations of WGM

Y5
. In this subsection, we give an explicit de-

scription of 10 linearly independent rational 2-abelian relations of WGM
Y5

which are obtained

as residues of HLOGY5
. Then considering Proposition 3.3, it will follow that together with

HLOGY5
, these 10 rational ARs form a basis of AR2(WGM

Y5

)
.

3.2.1. Residues of HLOGY5
. Recall that C(y) stands for the field of rational functions in the

variables yi for i = 1, . . . , 5, with y1 = y13, y2 = y14, y3 = y24, y4 = y25 and y5 = y35. Given

F, an irreducible non-constant polynomial in the yi’s, we denote by νF the associated valuation

C(y) \ {0}! Z. Then for V1,V2,V3 ∈ C(y), we set

ResF

(
ln

(
V1

)
dV2 ∧ dV3

)
= νF(V1) dV2 ∧ dV3 ∈ Ω2

C(y) ,

and we claim that this definition makes sense, that is that the RHS is independent of the determina-

tion of ln
(
V1

)
taken in the LHS (its is an easy exercice, left to the reader). We call νF(V1) dV2∧dV3

the residue of the logarithmic 2-form ln
(
V1

)
dV2 ∧ dV3 along the hypersurface cut out by F.20

We aim to take residues of (the components of) HLOGY5
with respect to the 10 irreducible

components of the divisor Z ⊂ Y5 defined in (18). For any i = 1, . . . , 10, one denotes by HLOGi

the i-th component of HLOGYi , namely

(41)

HLOGi = ǫi U∗i
(
Ω
)
= ǫi

(
ln Ui,1

(
dUi,2 ∧ dUi,3

Ui,2Ui,3

)
− ln Ui,2

(
dUi,1 ∧ dUi,3

Ui,1Ui,3

)
+ ln Ui,3

(
dUi,1 ∧ dUi,2

Ui,1Ui,2

))
.

From the topological definition of the residue (cf. the footnote below), it follows that for any

non-constant irreducible polynomial F, the 10-tuple of residues

(42) ResF
(
HLOGY5

)
=

(
ResF

(
HLOGi

) )10

i=1

with

ResF

(
HLOGi

)
= νF

(
Ui,1)

(
dUi,2 ∧ dUi,3

Ui,2Ui,3

)
− νF

(
Ui,2)

(
dUi,1 ∧ dUi,3

Ui,1Ui,3

)
+ νF

(
Ui,3)

(
dUi,1 ∧ dUi,2

Ui,1Ui,2

)

for any i, belongs to AR2
Rat

(
WGM

Y5

)
. Specializing F by taking for it one of the ten polynomials ζk

defined in (17), one gets 10 rational abelian relations

Resi = Resζi = Resζi

(
HLOGY5

)
, i = 1, . . . , 10

which can be easily computed from the explicit expressions (31) and (33) for the Ui,s. For in-

stance, one gets that Resy1
= Resy1

(
HLOGY5

)
corresponds to the following differential relation

U∗2

((du2 ∧ du3

u2u3

)
−

(du3 ∧ du1

u3u1

)
−

(du1 ∧ du2

u1u2

))
+ U∗4

(
du3 ∧ du1

u3u1

)
(43)

+U∗5

(
du3 ∧ du1

u3u1

)
+ U∗6

(
du3 ∧ du1

u3u1

)
+ U∗8

(
du2 ∧ du3

u2u3

)
= 0

which can be directly verified to be identically satisfied.

By straightforward computations, it can be verified that one has ρ2(W5
) ≤ 1 for any 5-subweb

W5 of WGM
Y5

. By analogy with the terminology introduced in [Da], any 2-abelian relation of

20The residue ResF

(
ln

(
V1

)
dV2∧dV3

)
can also be defined topologically, in terms of the monodromy of ln

(
V1

)
dV2∧

dV3 along a small loop around { F = 0 }, see [Pi5, §2.2.6] for more details on this approach.
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such a 5-subwebW5 will be said to be ‘combinatorial’ and we will denote the space spanned by

the combinatorial ARs by ARC
(
WGM

Y5

)
. From above, it follows that Resy1

is combinatorial.

By straightforward computations, one makes the 10 residues Resi entirely explicit from which

one first deduces that all these ARs are combinatorial and rational. Using the explicit formulas

obtained for the residues Resi together with the ones for the automorphisms of webs σk’s given

in (28), it is straightforward (however a bit laborious) to compute all the pull-backs σ∗k(Resi)

for k = 1, . . . , 5 and i = 1, . . . , 10. One obtains that any σ∗k
(
Resi

)
is a linear combination (with

non-zero coefficients ±1) of the ten residues of HLOGY5
. For instance, one has

σ∗1
(
Resy1

)
= −Resy2

+ Resy4
+ Resy5

+ ResP3
+ ResP5

More generally, by means of straightforward explicit computations, we get the

Proposition 3.8. 1. The residues Resi
(
HLOGY5

)
(i = 1, . . . , 10) all have exactly 5 non-trivial

components hence belong to AR2
C

(
WGM

Y5

)
. Moreover, they form a basis of this space, which

coincides with the space AR2
Rat

(
WGM

Y5

)
of rational ARs ofWGM

Y5
.

2. The birational maps σk’s induce linear automorphisms of AR2
C

(
WGM

Y5

)
making of this space a

WD5
-representation. As such, it is irreducible and isomorphic to V10

[11,111]
.

Proof. The proof goes by explicit computations.21 Since all the residues Resi’s have five non-

zero terms which are rational, they are combinatorial 2-abelian relations which span a subspace

of AR
(
WGM

Y5

)
in direct sum with the line spanned by HLOGY5

. The Resi’s being linearly

independent, it follows from Proposition 3.3 that ARC
(
WGM

Y5

)
has dimension 10 and admits

R =
(
Ress

)10
s=1 as a basis. This proves the first point of the proposition.

Computing all the pull-backs σ∗k
(
Resi

)
, one first obtains that they all have exactly five non-zero

terms hence are combinatorial 2-abelian relations hence are linear combinations of the Resi’s. It

is then straightforward to get the explicit forms for the matrices of the σ∗k ∈ GL
(
AR2

C

(
WGM

Y5

))

expressed in the basis R. For instance, one gets that

MatR
(
σ1
∗) =



0 0 0 1 0 0 0 0 0 0

−1 0 −1 0 0 0 0 0 0 0

0 −1 0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 1 0 0 0 0 0 −1

1 0 0 1 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 −1 0

1 0 0 0 0 0 −1 0 0 0



.

Knowing explicitly the matrices MatR
(
σk
∗) for k = 1, . . . , 5 and proceeding completely simi-

larly as in the Appendix of [Pi4], one computes the character of the representation of WD5
on

AR2
C

(
WGM

Y5

)
: one get that this character is

χ =
(

10,−2, 2,−4, 2, 0,−2, 2,−2, 0, 1,−1, 1,−1, 1, 0, 0, 0
)
.

21Another less computational proof could have be given, using the action of WD5
≃ W D5

on the set of combinatorial

abelian relations.
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It corresponds to the first line of the characters table of the Weyl group of type D5 given in [Pi4,

Table 4], which gives us the second point of the proposition. �

Remark 3.9. In [Pi5, §4.2], it has been established that one also has

HLogAR2
asym ≃ V10

[12,13]

as WD5
-representations, where the left hand side HLogAR2

asym stands for the space of symbolic
antisymmetric weight 2 AR of a del Pezzo webWdP4 of a quartic del Pezzo surface dP4. As it will
be explained further, this is no mere coincidence.

From the results above completed by some computational checks, we deduce the following

Corollary 3.10. 1. One has ρ2(W5
) ≤ 1 for any 5-subweb W5 of WGM

Y5
. Those for which

the virtual 2-rank is 1 actually are of maximal 2-rank 1. These subwebs are exactly the Wǫ =

W
(F ǫ1

1
, . . . ,F ǫ5

5

)
, for all 5-tuples ǫ = (ǫi)

5
i=1
∈ {±1}5 of even parity (i.e. such that ǫ1 · · · ǫ5 = +1).

For each even ǫ, the space of 2-ARs of Wǫ is spanned by a peculiar abelian relation ARǫ ,
uniquely defined up to sign, whose components with respect to each first integral U j = (U j,s)

3
s=1

ofWǫ is a linear combination, with coefficients ±1, of the rational 2-forms

d Log U j,a ∧ d Log U j,b =
dU j,a ∧ dU j,b

U j,aU j,b

(
1 ≤ a < b ≤ 3 ) .

Moreover, AR2
C

(
WGM

Y5

)
=

〈
ARǫ

∣∣∣ ǫ ∈ {±1}5 is even
〉

coincides with the space AR2
Rat

(
WGM

Y5

)

of rational 2-ARs ofWGM
Y5

and this space is 10-dimensional: dim AR2
C

(
WGM

Y5

)
= 10.

2. One has

(44) AR2
(
WGM

Y5

)
= AR2

C

(
WGM

Y5

)
⊕

〈
HLOGY5

〉
.

from which it follows that the 2-rank ofWGM
Y5

is 11, that is is AMP.

3. By residues/monodromy, the abelian relation HLOGY5
spans the subspace AR2

C

(
WGM

Y5

)
of

combinatorial ARs, which coincides with that of rational 2-ARs ofWGM
Y5

: one has

Res
(
HLOGY5

)
= AR2

C

(
WGM

Y5

)
= AR2

Rat

(
WGM

Y5

)
.

4. The decomposition in direct sum (44) actually is the decomposition of AR2
(
WGM

Y5

)
into irre-

ducible WD5
-representations. The two pieces AR2

C

(
WGM

Y5

)
and

〈
HLOGY5

〉
are isomorphic to

V10
[11,111]

and to the signature representation respectively.

3.2.2. A specific combinatorial 2-abelian relation of WGM

Y5
. For what is to come further, it

is interesting to consider the case of the 5-subweb W(U1, . . . ,U5) of WGM
Y5

. This web will be

denoted by WGM,+
Y5

and is defined by simple monomial first integrals:

WGM,+
Y5

=W

( (
y25 , y24y35

)
,
( 1

y13
,

y14y35

y13

)
,

(
y24 , y14y25

)
,

(
1

y35
,

y13y25

y35

)
,
(

y14 , y13y24

) )
.
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According to the fourth point of the above corollary, this web has maximal 2-rank (equal to 1).

We aim below to describe very explicitly a generator of the complex line AR2(WGM,+
Y5

).

Setting

(45) η = d Log x ∧ d Log y =
dx

x
∧ dy

y
=

dx ∧ dy

xy
,

one verifies without any difficulty that the following proposition is satisfied: Recall (from (38))

that one has ǫ1 = ǫ3 = ǫ5 = 1 and ǫ2 = ǫ4 = −1.

Proposition 3.11. 1. The 5-tuple AR2
η =

(
ǫi U∗i

(
η
))5

i=1
is a rational 2-abelian relation for W+Y5

,

i.e. in the space Ω2
C(y)

of rational 2-forms on C5, one has

5∑

i=1

ǫi U∗i

(
dx ∧ dy

xy

)
=

5∑

i=1

ǫi
dUi,1 ∧ dUi,2

Ui,1Ui,2
= 0 .

Moreover, in terms of the residues of HLOGY5
, one has AR2

η =
∑5

i=1 ResPi .

2. Consequently, one has AR2
(
W+Y5

)
=

〈
AR2

η

〉
.

Since
(
dx∧dy

)
/(xy) is closed, all the components U∗i

(
(dx∧dy)/(xy)

)
of AR2

η are closed as well

hence by Poincaré’s lemma, the latter abelian relation admits a primitive, at least locally. Since

ARC(WGM
Y5

) is irreducible as a WD5
-representation, this space is spanned by the orbit WD5

· AR2
η

which is formed of closed 2-abelian relations. It follows that all the residues Resi are closed (a

fact which can also be verified directly) hence locally exact.

We will use this to construct specific primitives of the residues Resi which will span an inter-

esting subspace of AR1(WGM
Y5

)
(see (49) in Theorem 3.14 below).

3.2.3. A more intrinsic and abstract approach. All the results of the previous subsection have

been obtained by direct computations. Here we say a few words about a more abstract approach

to the 2-ARs ofWGM
Y5

, one of the key ingredient of which being the action of WD5
on Y5.

Up to the birational identification Θ, the divisors { ζk = 0 } in Y5 correspond to 10 of the

weight divisors Dw in Y5 hence to some weights and lines in W+ and Lr respectively (see the

discussion following (15)). These correspondences are given in the table below, where we use the

following notations: we denote by
(1

2

)5
=

(1
2
, 1

2
, 1

2
, 1

2
, 1

2

)
the dominant weight ofW+. As elements

of PicZ
(
dP4

)
, we set etot =

∑5
k=1 ek and eı̂ = etot − ei =

∑
k,i ek for i ∈ [[5]]. Finally, we denote by

(vk)5
k=1

the standard basis of R5, that is vi = (δi j)
5
j=1

for i = 1, . . . , 5.

Line ℓ Weight wℓ Polynomial ζk

ei vi −
(1

2

)5 Pi

h − ei − e j
(1

2

)5 − vi − v j yi j
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Similarly, the correspondances between the W-relevant facets of the weight polytope, the cor-

responding conic classes and the first integrals ofWGM
Y5

are given in the second table just below.22

index i Facet Conic class First integral

i ∈ {1, . . . , 5} ∆+
5,i 2h − eı̂ Ui

i ∈ {6, . . . , 10} ∆−
5,i h − ei Ui+5

The variable ζ1 = y1 = y13 corresponds to the divisor associated to the line ℓ = h − e1 − e3.

The conic classes adjacent to it are h− e1, h− e3 and the three classes 2h− êk for k = 2, 4, 5. The

two former classes correspond to the foliations induced by U6 and U8, the three latter to the ones

with U2,U4 and U5 as first integrals. This is in accordance with the explicit expression (43) for

the residue of HLOGY5
along the divisor cut out by y1 = 0. In terms of Gelfand-MacPherson’s

web on Y5, this translates as the fact that

(46)
‘the residue of HLOGY5

along the weight divisor associated to wℓ = (− 1
2
, 1

2
,− 1

2
, 1

2
, 1

2
) is

the subweb defined by the face maps πF : Y5 ! YF for all facets F of ∆5 adjacent to wℓ’.

For a line l ∈ L, letWGM
Y5,l

be the subweb ofWGM
Y5

defined by the face maps πF : Y5 ! YF

for all facets F ⊂ ∆5 adjacent to l. More formally, setting K(l) for the subset of conic classes

c ∈ K such that c − ℓ ∈ L, one has

WGM
Y5,l
=W

(
πFc

∣∣∣ c ∈ K(l)
)
.

For instance, the web W
GM,+
Y5

considered in the previous subsection coincides withWGM
Y5,2h−etot

.

Proposition 3.12. 1. The sixteen 5-subwebs of WGM
Y5

with maximal 2-rank (equal to 1) are

precisely the subwebsWGM
Y5,ℓ

’s for all lines ℓ ∈ L.

2. Moreover, for any line ℓ, the residue Resℓ
(
HLOGY5

)
of HLOGY5

along the divisor Dℓ,

denoted by Resℓ, is a non-trivial AR forWGM
Y5,ℓ

. In other terms, one has
〈

Resℓ
〉
= AR2

(
WGM
Y5,ℓ

)
.

3. For any ℓ ∈ L, the following linear relation holds true in AR2
C

(
WGM
Y5

)
:

(

Relℓ
)

Resℓ =
∑

c∈K(ℓ)

Resc−ℓ .

Moreover, for any exceptional collection23 E ⊂ L, the set
{
Rell

}
l∈E is a basis of the space of

linear relations between the 16 residues of HLOGY5
.

4. For any exceptional collection E ⊂ L, there exists a unique line ℓE ∈ L which intersects all
the elements of E. Setting E = E ∪ {ℓE}, then the ten abelian relations Resℓ for ℓ ∈ L \ E, form a
basis of the space of combinatorial 2-ARs ofWGM

Y5
, i.e. there is an isomorphism

AR2
C

(
WGM
Y5

)
≃

⊕

ℓ∈L\E

C · Resℓ .

22We recall the notation for the W-relevant facets of ∆5: one has ∆ǫ
5,i = ∆D5

∩ { xi = ǫ/2 } for i ∈ [[5]] and ǫ = ±1.
23An ‘exceptional collection’ is a subset of L formed by five pairwise disjoint lines.
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Proof. This follows from explicit computations and from (46) combined with the facts that WD5
=

Aut(Y5) acts as the signature on the complex line spanned by HLOGY5
(cf. Proposition 3.6) and

acts transitively on the set of weight divisors inY5 as well as on the set of exceptional collections

E ⊂ L (see [Ma, Corollary 26.8]). �

3.3. The 1-abelian relations of WGM

Y5
. We consider the following privileged primitive of the

2-form η = dLog(x) ∧ dLog(y) :

(47) δ =
1

2

(
Log(x) d Log(y) − Log(y) d Log(x)

)
=

1

2

(
Log(x)

dy

y
− Log(y)

dx

x
.

)

Via elementary computations, one gets

2 U∗1
(
δ
)
= ln (y25)

dy24

y24
− ln

(
y24y35

) dy25

y25
+ ln (y25)

dy35

y35

2 U∗2
(
δ
)
= ln

(y14y35

y13

) dy13

y13
− ln (y13)

dy14

y14
− ln (y13)

dy35

y35

2 U∗3
(
δ
)
= ln (y24)

dy14

y14
− ln

(
y14y25

) dy24

y24
+ ln (y24)

dy25

y25

2 U∗4
(
δ
)
= − ln (y35)

dy13

y13
− ln (y35)

dy25

y25
+ ln

(
y13y25

y35

)
dy35

y35

and 2 U∗5
(
δ
)
= ln (y14)

dy13

y13
− ln

(
y13y24

) dy14

y14
+ ln(y14)

dy24

y24
.

Recall that ǫ1 = ǫ3 = ǫ5 = 1 and ǫ2 = ǫ4 = −1 (see (38)). The coefficient of the logarithmic

differential dy24/y24 in the sum
∑5

i=1 ǫi U∗i
(
δ
)

is the sum of those of the terms U∗k
(
δ
)

for k = 1, 3, 5,

namely it is

ln (y25) +
(
− ln

(
y14y25

) )
+ ln (y14) ,

a quantity which vanishes identically on any complex domain in Y5 containing (R>0
)5

. The same

phenomenon occurs for all the logarithmic differential dyi/yi with i = 1, . . . , 5, which proves the

Proposition 3.13. With ǫ1 = ǫ3 = ǫ5 = 1 and ǫ2 = ǫ4 = −1, one has identically

(48)

5∑

i=1

ǫi U∗i
(
δ
)
=

1

2

5∑

i=1

ǫi U∗i

(
Log(x)

dy

y
− Log(y)

dx

x

)
= 0

hence AR1
δ =

(
ǫi U∗i

(
δ
))5

i=1
is a 1-AR of weight 1 for W+Y5

. Moreover, one has d1 (
AR1

δ

)
= AR2

η.

For any ℓ ∈ L, the 2-abelian relation ARℓ is exact and is the total derivative of an 1-abelian

relation AR1
ℓ

of weight 1, which is equivalent to (48). We denote by AR1
C

(
WGM
Y5

)
(or just AR1

C

for short) the subspace of W1

(
AR2(WGM

Y5

))
spanned by these ARs, a notation which is justified

by the fact that d1 sends AR1
C

(
WGM
Y5

)
onto AR2

C

(
WGM
Y5

)
, a fact which in particular implies that

dim AR1
C ≥ 10. From r1

(
WGM

Y5

)
= 35 and essentially using explicit computations, one gets the

following result which gives a quite detailed description of the structure of the space of 1-abelian

relations ofWGM
Y5

.
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Theorem 3.14. 1. One has r1(W5
) ≤ 6 for any 5-subweb W5 ofWGM

Y5
. Those for which the

1-rank is 6 are the subwebsWǫ =W
(F ǫ1

1
, . . . ,F ǫ5

5

)
for any 5-tuple ǫ = (ǫi)

5
i=1
∈ {±1}5.

2. When ǫ is odd, the space of 1-abelian relations ofWǫ has a basis formed of ARs corresponding
to identities of the form

∑
i∈Iǫ

∑3
s=1 ci,sd LogUi,s = 0 for some coefficients ci,s ∈ {−1, 0, 1}. In

particular, the 1-ARs of this web all are of weight 0:

AR1(Wǫ) = W0

(
AR1(Wǫ)) .

3. When ǫ is even, the situation is different since not all the ARs ofWǫ are of weight 0. Indeed:

• the space 1-abelian relations ofWǫ of weight 0 is of dimension 5 and has a basis formed
of ARs of the same form as in 2;

• but there exists an 1-AR of weight 1, denoted by AR1
ǫ whose each component is a linear

combination with coefficients in { 0,±1 } of the 1-forms with logarithmic coefficients

1

2

(
Log U j,a d Log U j,b − Log U j,b d Log U j,a

) (
1 ≤ a < b ≤ 3 ) .

and which is such that dAR1
ǫ = Resǫ .

4. The space of 1-abelian relations of weight 0 of WGM
Y5

is of dimension 20 and has a basis of

ARs as in 2, that is which correspond to identities of the form
∑10

i=1

∑3
s=1 ci,sdLogUi,s = 0 for some

coefficients ci,s ∈ {−1, 0, 1}. Moreover, one has W0

(
AR1(WGM

Y5

))
= AR1

Rat

(
WGM

Y5

)
and this space

is a subspace of the space Ker
(
d1) of closed 1-ARs ofWGM

Y5
.

5. The 1-ARs AR1
ǫ for ǫ even span a space of dimension 10 on which the restriction of the

derivative (5) induces an isomorphism onto AR2
C

(
WGM

Y5

)
: setting

(49) AR1
C = AR1

C

(
WGM

Y5

)
=

〈
AR1

ǫ

∣∣∣ ǫ ∈ {±1}5 is even
〉
,

this isomorphism is given by d1 : AR1
C

(
WGM

Y5

) ∼
−! AR2

C

(
WGM

Y5

)
, AR1

ǫ 7−! Resǫ .

6. For any i, j, k such that 1 ≤ i < j < k ≤ 5, the 6-subweb Wi jki∗ j∗k∗ ofWGM
Y5

defined by the
first integrals Ul for l ∈ {i, j, k, i + 5, j + 5, k + 5} carries a complete and irreducible 1-AR of
weight 1, denoted by AR1

i jk (uniquely defined up to sign), the l-th component of which is a linear
combination, with coefficients in {−1, 0,+1}, of the exact 1-forms

d
(
Log Ul,a Log Ul,b

)
= Log Ul,a d Log Ul,b + Log Ul,b d Log Ul,a

(
1 ≤ a < b ≤ 3 ) .

The ten 1-abelian relations AR1
i jk span a subspace of W1

(
AR1

C

(
WGM

Y5

))∩ Im
(
d0) of dimension 5,

which will be denoted by AR1
S ym

(
WGM

Y5

)
or just AR1

S ym for short.

7. There is a decomposition in direct sum:

(50) AR1
(
WGM

Y5

)
=

W1

(
AR1

(
WGM

Y5

))
︷                                       ︸︸                                       ︷

W0

(
AR1(WGM

Y5

))20
⊕ AR1

S ym

(
WGM

Y5

)5
⊕ AR1

C

(
WGM

Y5

)10

︸                                             ︷︷                                             ︸
Im

(
d0
)
=Ker

(
d1
)

.

where the upper exponents in red stand for the corresponding dimensions. It follows that the
1-rank ofWGM

Y5
is 35.
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8. The decomposition in direct sum (50) actually is the decomposition of AR1
(
WGM

Y5

)
into irre-

ducible WD5
-representations, with the following isomorphisms:

(51) W0

(
AR1

)
≃ V20

[2,21] , AR1
S ym ≃ V5

[−,221] and AR1
C ≃ AR2

C ≃ V10
[11,111] .

Proof. The proof essentially goes by explicit computations that we do not reproduce here.24

For the eighth point, we proceeded as follows: thanks to the explicit expressions (27) and (28)

for the generators σi of WD5
(see (30)), and working with an arbitrary but fixed basis of any one

of the spaces W0
(
AR1), AR1

S ym or AR1
C, noted here by S , there is no difficulty first to verify that

the pull-back maps σ∗i give rise to automorphisms of S , second to get explicit matrices of these

automorphisms with respect to the chosen basis. Then proceeding as in the Appendix of [Pi4],

there is no difficulty to compute the character of the representation WD5
≃ WD5

֒! GL(S ). For

instance, one obtains that the character of the action of WD5
on W0

(
AR1(WGM

Y5

))
is

χW0(AR1) =
(

20,−4, 4, 2,−2, 2,−2, 0, 0, 0,−1, 1,−1,−1, 1, 0, 0, 0
)
.

Looking at the character table of WD5
(cf. Table 4 in [Pi4] for instance), the first isomorphism in

(51) follows. The two other cases are handled in the same way. �

3.4. The 0-abelian relations ofWGM

Y5
. One has r0

(
WGM

Y5

)
= 25 and because the differential d0

induces an isomorphism AR0 = AR0(WGM
Y5

) ≃ Im
(
d0) = W0

(
AR1) ⊕ AR1

S ym, the structure of

AR0 essentially has already been given in the previous subsection.

For i ∈ [[5]], one sets i∗ = i + 5 ∈ {6, . . . , 10} and l,m, n ∈ [[10]] pairwise distinct, one

denotes byWlmn the 3-subweb ofWGM
Y5

defined by the first integrals Ul, Um and Un: Wlmn =

W(Ul,Um,Un). By direct explicit computations, we get the following result which just adds a

few details to what can be deduced from Theorem 3.14.

Proposition 3.15. 1. One has a direct sum

AR0
(
WGM

Y5

)
= W1

(
AR0

)20
⊕W2

(
AR0

)5

with the differential d0 inducing isomorphisms of WD5
-representations

W1
(
AR0) ≃ W0

(
AR1) ≃ V20

[2,21] and W2
(
AR0) ≃ AR1

S ym ≃ V5
[−,221] .

2. The 3-subwebs of WGM
Y5

have 0-rank less than or equal to 1. Those with rank 1 are the 3-
subwebs Wi jk, Wi jk∗ , Wi j∗k∗ , Wi∗ j∗k∗ , and are therefore 80 in number. Their 0-ARs all have
weight 1 and they span the whole space W1

(
AR0) which is of dimension 20.

3. For any i, j, k such that 1 ≤ i < j < k ≤ 5, the 1-AR AR1
i jk of the 6-subwebWi jki∗ j∗k∗ ofWGM

Y5

is exact, and is the derivative of a 0-AR denoted by AR0
i jk, which corresponds to the (unique up

to sign) functional identity of the form
∑

l
∑

1≤a<b≤3 ca,b
l Log Ul,a Log Ul,b = 0 where the first sum

is for l ranging in {i, j, k, i∗, j∗, k∗}, and where all the coefficients ca,b
l belong to {−1, 0, 1}.

The ten 0-abelian relations AR0
i jk span the whole space W2

(
AR0) of 0-abelian relations of

weight 2 ofWGM
Y5

, which is of dimension 5. Moreover, the space Res
(
W2

(
AR0)) spanned by the

24Short Maple worksheets are available from the author upon request.
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residues of the weight 2 abelian relations AR0
i jk coincides with W1

(
AR0). One has:

Res
(
W2

(
AR0)) =

〈
Resζℓ

(
AR1

i jk

) ∣∣∣∣ ℓ = 1, . . . , 10

1 ≤ i < j < k ≤ 5

〉
= W1

(
AR0

)
.

All the 0-ARs ofWGM
Y5

can be made explicit. For instance, the following weight 2 functional

identity
(

ln

(
U1,1

U1,2

)
ln

(
U1,3

))
+

(
ln

(
U2,1U2,2

)
ln

(
U2,3

) )
+

(
ln

(
U3,1

U3,2

)
ln

(
U3,3

) )

+

(
ln

(
U6,1

U6,2

)
ln

(
U6,3

) )
+

(
ln

(
U7,1U7,2

)
ln

(
U7,3

) )
+

(
ln

(
U8,1

U8,2

)
ln

(
U8,3

) )
= 0

corresponds to the weight 2 abelian relation AR0
123

of the webW123 =W(U1,U2,U3,U6,U7,U8).

3.5. The various links between the spaces of ARs ofWGM

Y5
summarized in a table. We find

interesting/enlightening as well as convenient to gather all our findings about the abelian relations

ofWGM
Y5

in Table 2 below. In it:

− the columns are labelled by the weight of the ARs, the lines by their degree;

− the diagonal black arrows are isomorphisms of WD5
-representations induced by the dif-

ferentials dk : ARk
! ARk+1 (with k = 0, 1);

− a dashed red arrow Tc S means that the whole target space T is spanned by the residues

of the elements of the source space S;

− the upper exponents in red stand for the dimension of each space;

− HLOG stands for the complex line spanned by the ‘master 2-abelian relation’ HLOGY5
.

Table 1. The subspaces of the space of abelian relations ofWGM
Y5

and the many

relations between them.

It may be useful to gather the structures as W(D5)-representations of the subspaces appearing

in this table as well. This is given in the following Table 2.
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Table 2. The subspaces of AR
(
WGM

Y5

)
as WD5

-representations.

4. A cluster view onWGM

S5

A particularly interesting feature of Abel’s identity of the dilogarithm is that it has a ‘cluster

nature’, in the sense that it can be written in an equivalent nice form in terms of some cluster

variables (see [Pi2] for details). Indeed, if Xℓ (with ℓ ∈ Z/5Z) stands for the X -cluster variables

of type A2 characterized by the 5-cyclic recurrence relations Xℓ−1Xℓ+1 = 1 + Xℓ for any ℓ, then

setting X1 = u1 and X2 = u2, one has X3 =
1+u2

u1
, X4 =

1+u1+u2

u1u2
, X5 =

1+u1

u2
and Xℓ+5 = Xℓ for every

ℓ ∈ Z.25 Moreover it is well-known that
(

Ab
)

is equivalent to the following functional identity

(52)

5∑

i=1

R
(
Xℓ

)
=
π2

2

which is satisfied for all X1, X2 > 0 by the ‘cluster dilogarithm’ R.26 In addition to furnishing a

very nice formal way to write this identity, the cluster perspective on it offers a more conceptual

way to interpret it, since (52) (hence Abel’s identity
(

Ab
)

) can be seen as the manifestation of

a certain property of an important object associated to the X -cluster algebra of type A2, namely

the associated scattering diagram SCA2
. Then that (52) holds true follows from the fact that this

scattering diagram is ‘consistent’ (see [Na2, Theorem 3.6]).

If one believes that HLOGY5
is a natural generalization of the five terms identity of the diloga-

rithm, it is natural to wonder whether the former differential identity may be explained in terms of

a certain property of a putative scattering diagram SCY5
or not. Moreover, because HLOGY5

is

given by the vanishing of a sum with finitely many terms, a naive expectation would be that SCY5

be of finite type. Thus if one is fool and dreamy enough to want explain HLOGY5
by means of

a scattering diagram, a first step would be to find a cluster-like structure associated to the spinor

10-fold S5, which firstly is of finite type and secondly, is well suited to the web WGM

Y5
under

25It seems that, in a slightly different form, the cyclic recurrence of the Xℓ’s was already known to Gauss, see here.
26This is the function defined by R(u) = 1

2

∫ u

0

(
ln(1 + t)/t −ln(t)/(1 + t)

)
dt for any u > 0 (see [Pi2, §2.2.2.1]). In

terms of the classical bilogarithm, it is expressed as R(u) = −Li2(−u) − 1
2
Log(u)Log(1 + u) for any u ∈ R>0.

https://www.math.uni-bielefeld.de/~sek/cluster/pentagramma/
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consideration. There are many works on some cluster structures on some pieces (more precisely,

some open domains of some peculiar subvarieties) of generalized flag manifolds, but except in

very few known cases, these cluster structures are not of finite type. For the case under considera-

tion, we are not aware of any classical cluster structure on (some dense open-subset of) S5 which

is of finite type, which may temper our dream of explaining HLOGY5
via a finite scattering dia-

gram. However, some recent works by Ducat and Daisey-Ducat suggest that allowing to consider

more general cluster-like structures than the classical ones might be the suitable path to reach our

goal.

In [Du], for the case ofG5 = S5, and in [DD] for the case of the Cayley planeG6 = OP2, Ducat

then Ducat together with Daisey describe a cluster-like structure of finite type on the coordinate

ring Rr of a certain Zariski open domain in Gr for r = 5, 6. These cluster-like structures are

known as LPAs27, a generalization of the classical notion of cluster algebra introduced by Lam

and Pylyavskyy in [LP]. As the name suggests, the main feature of such an algebra is that any

‘cluster’ variable obtained by means of a finite sequence of ‘generalized mutations’ from the

initial cluster variables is a Laurent polynomial in the latter. For r = 4, one has G4 = G2(C5) and

this grassmannian carries a classical A -cluster structure of finite type A2 which, after quotienting

by the action of the rank 4 Cartan torus H4 of SL5(C), gives rise to the X -cluster structure of

type A2 on Y∗4 = G
∗
4//H4 = G2(C5)∗//H4 ≃ M0,5.

In [Du], Ducat endows the coordinate ring of the complement S◦
5

of a divisor in the spinor 10-

fold with the structure of a finite LPA. Unfortunately, the theory of LPAs has not been developed

that much so far. The notion of mutation for these algebras is a generalization of the binomial

A -mutation of the classical theory of cluster algebras but as of the time of writing, an equivalent

notion for LPAs of that of X -mutation has not be worked out yet. For that reason, we do not have

a cluster description of Gelfand-MacPherson web on Y∗5 as nice as the one ofWGM
Y4

in terms of

the X -cluster variable of type A2, which can be written in a concise mathematical form as

WGM
Y4
≃ XXWA2

=W
(
Xi

)5
i=1 =W

(
u1 , u2 ,

1 + u2

u1
,

1 + u1 + u2

u1u2
,

1 + u1

u2

)
.

Because ther is no generalization to the case of LPAs of the notion of X-mutation of the clas-

sical theory of cluster algebras yet, we are going to deal with Gelfand-MacPherson’s web of the

spinor tenfold S5 instead. In short, we prove thatWGM
S5

is cluster with respect to the finite LPA

structure on S5 constructed by Ducat in [Du].

Proposition 4.1. 1. Wick’s parametrization (10) of S5 is cluster, i.e. the Wick coordinates xi j ◦
W−1 : S5 ≃ Asym5(C) d C (for i, j such that 1 ≤ i < j ≤ 5) naturally identify with some of the
cluster variables of Ducat’s LPA of S5.

2. The ten face maps ΠF : S5 d S4,F are cluster in the sense that their components, when written
in the initial cluster variables at the source and some Wick’s coordinates at the target, are cluster
variables, possibly up to sign and up to multiplication by a monomial in the frozen variables.

In the lines below, we explain how we proceeded to get this result.

27LPA is the acronym for ‘Laurent Phenomenon Algebra’.
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4.1. Ducat’s LPA on S5. Ducat’s LPA onA5 has rank 3 and 18 cluster variables in total, among

which 8 are frozen. These latter are denoted by a1, . . . , a8. Denoting by x1, x2, x3 the initial

unfrozen cluster variables, all the other ones can be obtained using the following SageMath script

written by Daisey and which can be run online at his webpage:

sage: var("x1,x2,x3")

sage: coeffs = [var("a%d" %i) for i in range(1, 9)] # coefficients

sage: F1 = a5*x2 + a8*x3 + a2*a3

sage: F2 = a6*x1*x3 + a3*a4*x1 + a8*a1*x3 + a1*a2*a3

sage: F3 = a4*x1 + a7*x2 + a1*a2

sage: S = LPASeed({x1:F1, x2: F2, x3:F3})

sage: show(S.variable_class())

In addition to the three initial cluster variables x1, x2, x3, the other unfrozen cluster variables

are the following:

a2a3 + a5x2 + a8x3

x1
,

a1a2a3 + a1a8x3 + a3a4x1 + a6x1x3

x2
,

a1a2 + a4x1 + a7x2

x3
,

a1a2a3 + a1a5x2 + a1a8x3 + a3a4x1 + a6x1x3

x1x2
,

a1a2a3 + a1a8x3 + a3a4x1 + a3a7x2 + a6x1x3

x2x3
,

a1a2
2
a3 + a1a2a5x2 + a1a2a8x3 + a2a3a4x1 + a2a3a7x2 + a4a5x1x2 + a5a7x2

2
+ a7a8x2x3

x3x1
,

a1a2
2
a3 + a1a2a5x2 + a1a2a8x3 + a2a3a4x1 + a2a3a7x2 + a2a6x1x3 + a4a5x1x2 + a5a7x2

2
+ a7a8x2x3

x1x2x3
.

These cluster variables are Laurent polynomials in the initial unfrozen cluster variables x1, x2

and x3, with coefficients in the monoid N>0[a1, . . . , a8]. The non initial unfrozen cluster variables

are characterized by their denominators which are monomials in the xi’s. Hence one can denote

these cluster variables by Xi, Xi j and X123 for i, j ∈ {1, 2, 3} distinct, where Xi (resp. Xi j or X123)

stands for the cluster variables with monomial denominator xi (resp. xix j or x1x2x3), that is:

X1 =
a2a3 + a5x2 + a8x3

x1
, X2 =

a1a2a3 + · · · + a6x1x3

x2
, . . . , X123 =

a1 a2
2a3 + · · · + a7a8x2x3

x1x2x3
.

4.2. The initial cluster on S5 and Wick’s coordinates. The initial cluster of Ducat’s LPA struc-

ture on (the affine cone Ŝ5 over) S5 is formed by the triple (x1, x2, x3) together with the frozen

variables a1, . . . , a8. These cluster variables are the restrictions to Ŝ5 of some of the weight coor-

dinates on the spinor representation S +
5

. So each of the initial cluster coordinates is associated to a

well-defined weight of the spinor representation. The same holds for the Wick coordinates we use

here for parametrizing birationnally S5 and it is by comparing the weights of all these coordinates

that we are going to make explicit the way they are related.

In [DD], it is by means of a figure (namely Figure 3.(a)) that is indicated what are the weights

of the 16 coordinates xi, ai for i = 1, . . . , 8 considered by Ducat. For the Wick coordinates,

the analogous correspondence is given in [Pi5, Table 4.1]. Since [DD, Figure 3.(a)] pictures the

images of the weights by ‘the’ Coxeter projection, it suffices to have an explicit expression for the

latter in order to get how Ducat’s cluster coordinates and Wick’s ones are related. This is what we

do below.

https://oliverdaisey.github.io/code/
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Recall that a useful description of the weights of S +
5

is in terms of the sixteen lines of an

arbitrary (but fixed) smooth del Pezzo surface dP4 described as the blow-up of the projective plane

in five points. Then PicZ(dP4) is freely generated by the classes e1, . . . , e5 of the five exceptional

divisors of the blow up plus the class h of the preimage under the blow-up map of a generic line in

P2. With these notations, we use the following labels for (the classes of) the lines ℓi (i = 1, . . . , 16)

of the considered del Pezzo surface:

(
ℓi
)16

i=1
=

(
e1 , e2 , e3 , e4 , e5 , h − e1 − e2 , h − e1 − e3 , h − e1 − e4 ,

h − e1 − e5 , h − e2 − e3 , h − e2 − e4 , h − e2 − e5 ,

h − e3 − e4 , h − e3 − e5 , h − e4 − e5 , 2h − e1 − e2 − e3 − e4 − e5

)
.

The canonical class is κ = −3h +
∑5

i=1 ei and as a basis for its orthogonal κ⊥, we take the one

formed by the following classes:

f1 =
1
2

(
h + e1 − e2 − e3 − e4 − e5

)
f2 =

1
2

(
h − e1 + e2 − e3 − e4 − e5

)
f3 =

1
2

(
h − e1 − e2 + e3 − e4 − e5

)

f4 =
1
2

(
h − e1 − e2 − e3 + e4 − e5

)
and f5 =

1
2

(
h − e1 − e2 − e3 − e4 + e5

)
.

For i = 1, . . . , 16, we denote by ωi = ωℓi ∈ R5 the vector of coordinates of ℓi −
(
κ, ℓi

)
κ ∈ κ⊥ ex-

pressed in the basis f = ( f i
)5
i=1. These sixteen 5-tuples are the weights of the spinor representation

we are working with:

ω1 =

(
1

2
,−1

2
,−1

2
,−1

2
,−1

2

)
ω2 =

(
−1

2
,

1

2
,−1

2
,−1

2
,−1

2

)
ω3 =

(
−1

2
,−1

2
,

1

2
,−1

2
,−1

2

)

ω4 =

(
−1

2
,−1

2
,−1

2
,

1

2
,−1

2

)
ω5 =

(
−1

2
,−1

2
,−1

2
,−1

2
,

1

2

)
, ω6 =

(
−1

2
,−1

2
,

1

2
,

1

2
,

1

2

)

ω7 =

(
−1

2
,

1

2
,−1

2
,

1

2
,

1

2

)
ω8 =

(
−1

2
,

1

2
,

1

2
,−1

2
,

1

2

)
ω9 =

(
−1

2
,

1

2
,

1

2
,

1

2
,−1

2

)
(53)

ω10 =

(
1

2
,−1

2
,−1

2
,

1

2
,

1

2

)
ω11 =

(
1

2
,−1

2
,

1

2
,−1

2
,

1

2

)
ω12 =

(
1

2
,−1

2
,

1

2
,

1

2
,−1

2

)

ω13 =

(
1

2
,

1

2
,−1

2
,−1

2
,

1

2

)
ω14 =

(
1

2
,

1

2
,−1

2
,

1

2
,−1

2

)
ω15 =

(
1

2
,

1

2
,

1

2
,−1

2
,−1

2

)

and ω16 =

(
1

2
,

1

2
,

1

2
,

1

2
,

1

2

)
.

As generators of the Weyl group, we take the involutions S i for i = 1, . . . , 4, which exchange

f i with f i+1 and let the others f k’s fixed, and S 5 is the one such that S 5( f i) = f i for i = 1, 2, 3 and

S 5( f j) = − f k for { j, k} = {4, 5}. The corresponding matrices in the basis f are denoted the same:

S1 =



0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


S2 =



1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1


S3 =



1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1


S4 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0


S5 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 −1

0 0 0 −1 0


.
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As a Coxeter element, we take

C = S1S2S3S4S5 =



0 0 0 −1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 −1



whose order is verified to be the Coxeter number h = hD5
of W(D5), namely h = 8. Let PC be the

Coxeter plane and ΠC : R5
! PC be the corresponding Coxeter projection. By definition, PC is

the 2-plane in R5 which is fixed by C and such that C|PC is a rotation of angle 2π/h = π/4. Over

the complex, the Coxeter element C admits λ = e
2iπ
h as an eigenvalue, with associated eigenspace

of dimension 1 and spanned by the eigenvector ν =
(

(−1 + i)/
√

2 , i , (1 + i)/
√

2 , 1 , 0
)
. Then

PC is the plane spanned by the real and the imaginary parts of v. After normalization, we get that

the following two vectors form a basis of PC which is orthonormal with respect to the standard

Euclidean structure on R5:

νre =

(
−1

2
, 0 ,

1

2
,

1
√

2
, 0

)
, νim =

(
1

2
,

1
√

2
,

1

2
, 0 , 0

)

Then with respect to the bases f and
(
νre, νim

)
, Coxeter projection is written x 7!

(〈x, νr〉 , 〈x, νim〉
)

and one can compute all points ΠC(ωi) ∈ R2 for i = 1, . . . , 16. One obtains the sixteen black dots

in Figure 2 with the corresponding label indicated in green inside each. Then (up to an irrelevant

rotation), one can identify the black dots of our figure with the vertices of [DD, Figure 3.(a)].

These latter being labeled by Ducat’s notation x1, . . . , x8, a1, . . . , a8 for the weight variables, one

can associate one of our weights ωi to each of them. On the other hand, we indicated what are

the weights of Wick’s coordinates in [Pi5, Table 4.1]. We thus deduce the following relations

between Ducat’s labelling of the weight variables and the components of Wick’s parametrization:

there exist complex constants νi’s (for i = 1, . . . , 10) such that the following relations (as rational

functions) hold true:
x1

a5
= ν1 x14,

x2

a5
= ν2 P2,

x3

a5
= ν3 x13,

a1

a5
= ν4P5,

a2

a5
= ν5 x15,

a3

a5
= ν6 x34,

a4

a5
= ν7 P4,

a6

a5
= ν8 P1,

a7

a5
= ν9 x12,

a8

a5
= ν10 x45 .

Taking
(
νi
)10
i=1 =

(
1 , −1 , 1 , 1 , 1 , 1 , −1 , −1 , 1 , 1

)
(that is νi = −1 for i ∈ {2, 7, 8} and νi = 1

otherwise), the relations above can be solved nicely. We obtain that A = (xi j)
5
i, j=1
∈ Asym5(C)

is such that W(A) ∈ S5 has Ducat’s coordinates x1, . . . , x8, a1, . . . , a8 if and only if the following

equality is satisfied:

(54)



0 x12 x13 x14 x15

−x12 0 x23 x24 x25

−x13 −x23 0 x34 x35

−x14 −x24 −x34 0 x45

−x15 −x25 −x35 −x45 0


=

1

a5



0 a7 x3 x1 a2

−a7 0 X12 X23 X123

−x3 −X12 0 a3 X1

−x1 −X23 −a3 0 a8

−a2 −X123 −X1 −a8 0


.

This proves the first point of Proposition 4.1.

With (54) at hand, proving the second point of Proposition 4.1 becomes straightforward using

some formulas obtained in our previous article. In [Pi5], we gave explicit expressions for the 10

face maps expressed in Wick coordinates. The weight polytope ∆D5
⊂ R5 is the convex enveloppe



44 L. PIRIO

x1

x2

a8

a6

x4
a3

x5

a1

x7

x8

a4

a5

a2

a7

x3

x6

Figure 2. Projection of Gosset’s graph28on the Coxeter plane and correspon-

dance between the weights (with their label used in this paper in green) and the

spinor coordinates of [DD, Figure 3.(a)] (in red).

of the 16 weights (53). It has 10 W-relevant facets, five ‘positive’ facets ∆+D5,i
= ∆D5

∩ {
xi =

+1/2
}

and five ‘negative’ ones ∆−D5,i
= ∆D5

∩ {
xi = −1/2

}
(with i = 1, . . . , 5).

The face maps S5 d S4 associated with the five positive facets are written very simply in Wick

coordinates since they correspond to the maps Asym5(C) ∋ A 7! Aı̂ ∈ Asym4(C) where Aı̂ stands

for the 4 × 4 matrix obtained by removing from A its i-th line and its i-th column (cf. Proposition

4.7 in [Pi5]). Viewed (54), we immediately get the second point of Proposition 4.1 for the five

face maps associated to the positive facets of the weight polytope.

The expressions in Wick coordinates of the five face maps associated to the negative facets of

∆D5
are more involved. Some birational models of these maps are the maps A 7! Ai, j = Ψi, j(A)

with i , j where Ψi, j : Asym5(C) d Asym4(C) is the rational map considered in (actually just

above) Corollary 4.8 of [Pi5].

Using (54) and the explicit formulas for the Ψi, j’s, it is straightforward to get the following

expressions for some models of the five ‘negative face map’ written in terms of the initial cluster

28Gosset’s graph is the 1-sekeleton of Gosset’s polytope 121, which here coincides with the weight polytope ∆D5
.
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coordinates:

A1,5 =
1

a2



0 −a4a5 −a5X3 a7

a4a5 0 −a5x2 x3

a5X3 a5x2 0 x1

−a7 −x3 −x1 0


A2,1 =

1

a7



0 X12 X23 X123

−X12 0 −a1a5 a4a5

−X23 a1a5 0 a5X3

−X123 −a4a5 −a5X3 0



A3,4 =
1

a3



0 a1a5 x3 −a5x2

−a1a5 0 X12 −a6a5

−x3 −X12 0 −X1

a5x2 a6a5 X1 0


A4,1 =

1

x1



0 X23 a3 a8

−X23 0 −a1a5 a5X3

−a3 a1a5 0 a5x2

−a8 −a5X3 −a5x2 0



and A5,4 =
1

a8



0 a5X3 a5x2 −a2

−a5X3 0 a6a5 −X123

−a5x2 −a6a5 0 −X1

a2 X123 X1 0


.

Up to an irrelevant minus sign for some entries, the coefficients of these matrices are all either

monomials in the frozen cluster variables or products of a cluster variable with such a monomial,

which completes the proof of Proposition 4.1.
⋆

We finish this subsection by two remarks.

The first is that, if our results above are only about the cluster nature of Gelfand-MacPherson’s

web of the spinor tenfold S5, we are convinced that they must have a kind of X-counterparts for

the webWGM
Y5

which is truly the one we are interested in. The lack of a theory of ‘coefficients’

and above all of their mutations is the reason why we didn’t work withWGM
Y5

. We hope to come

back to this in the future.

Another remark concerning the above material is that while the approach used to prove Propo-

sition 4.1 ultimately relies on some explicit calculations, it nevertheless points to a geometric way

of constructing the LPA cluster structure on S5, namely by means of the face maps associated

with the facets of the weight polytope. In an ongoing research project, we have verified that this

geometric approach generalizes to several other homogeneous spaces. We hope to continue our

researches in this direction in the near future as well.

5. The web W+
Y5

, Bol’s web, and their abelian relations

In this subsection, we study a certain 5-subweb W+
Y5

of WGM
Y5

which carries interesting ARs

which are in a 1-1 correspondance with those of Bol’s web. In particular, one recovers Abel’s

5-term identity from an 1-AR with logarithmic coefficients and monomial arguments, which is

new as far we know. The latter abelian relation will be used further in section §6 for recovering

the del Pezzo hypertrilogarithmic identities HLog3
dP4

from HLOGY5
.

5.1. The web W+
Y5

and its abelian relations. In this subsection, we aim to study the relations

between the web

W+Y5
=W

( (
y25 , y24y35

)
,
( 1

y13
,

y14y35

y13

)
,

(
y24 , y14y25

)
,

(
1

y35
,

y13y25

y35

)
,
(

y14 , y13y24

) )
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and its abelian relations to those of Bol’s web.

The 1-AR AR1
δ of Proposition 3.13, which corresponds to the differential identity

0 =

5∑

i=1

ǫi U∗i
(
δ
)
=

1

2

5∑

i=1

ǫi U∗i
(

Log(x) dy/y − Log(y) dx/x
)

spans the subspace of weight 1 abelian relations of W
GM,+
Y5

: one has

W1

(
AR

(
W

GM,+
Y5

))
=

〈
AR1

δ

〉
.

Determining the 1-ARs of weight 0 of W+Y5
amouts to find the scalar constants ci,s (with i =

1, . . . , 5 and s = 1, 2) such that the differential identity
∑5

i=1

(
ci,1 dUi,1/Ui,1+ci,2 dUi,2/Ui,2

)
= 0 is

satisfied, hence reduces to elementary linear algebra. We find that any 3-subweb of WGM,+
Y5

carries

such an 1-AR (which moreover is unique up to multiplication by a non-zero scalar) which will

be said ‘combinatorial’. These ARs span a space ARC
(
W

GM,+
Y5

)
which is of dimension 5. From

Proposition 3.3.2, it follows that we have the following decomposition in direct sum:

(55) AR1
(
W+Y5

)
= AR1

C

(
W+Y5

)5
⊕ 〈

AR1
δ

〉1

with AR1
C

(
W+Y5

)
= W0

(
AR1(W+Y5

))
and 〈AR1

δ

〉
= W1

(
AR1(W+Y5

))
.

Let W ′ be the subgroup of the Weyl group WD5
spanned by the birational involutions σi for

i = 1, . . . , 4 (see (28)). It is a group isomorphic to the Weyl group of type A4 (hence to the

symmetric group S5) which lets the 5-web W+Y5
invariant. Moreover, it can be verified that W ′

acts by linear automorphisms on the space of 1-ARs of W+Y5
making of it a representation of S5.

By straightforward computations, we prove the

Proposition 5.1. The decomposition in direct sum (55) actually is the decomposition of AR
(
W+Y5

)

into irreducible representations of S5. Moreover, we have the following isomorphisms of S5-
representations:

(56) AR1
C

(
W+Y5

)
≃ V5

[221] and 〈AR1
δ

〉 ≃ V1
[15]

.

Our aim is now to relate W+
Y5

and its ARs to Bol’s web and more specifically to its main abelian

relation, the dilogarithmic AR given by Abel’s relation.

5.2. The web W+
Y5

and Bol’s web. In §4.5.2 of [Pi5], we gave several birational models of

Serganova-Skorobogatov’s embedding fSS : Xr ֒! Y r. Let (a, b) ∈ C2 be such that Xr iden-

tifies with the blow-up of the plane at the vertices of the standard quadrilateral in P2 plus the point

[a : b : 1]. In [Pi5] (around Corollary 4.12 more precisely), we obtained that for generic complex

constants s1, s2, s3 ∈ C and setting si j = si − s j for any i, j and y =
(
y1,3, y1,4, y2,4, y2,5, y3,5

)
, the

following rational map

(x, y) 7−! y =

(
(x − 1) s13

(a − 1) s3
,

x (y − 1) (a − b) s1s23

(x − y) a (b − 1) s3s12
,

y (a − b) s2

(x − y) bs12
,

(b − 1) s3

(y − 1) s23
,

(x − y) (b − 1) s12

(y − 1) (a − b) s23

)
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is a birational model for fSS . If one is no longer interested by taking track of the parameters a and

b, by eliminating some parameters, one can consider the rational map

(x, y) 7−! y =

(
g13 (x − 1) , g14

x (y − 1)

(x − y)
,

g24 y

(x − y)
,

g25

(y − 1)
, g35

(x − y)

(y − 1)

)

where the gi j’s are non zero complex parameters required to satisfy the following polynomial

relation:

1 = g13g14g24g25g35 − g13g14g24 − g13g14g35 − g13g25g35 − g24g25g14

− g24g25g35 + g13g14 + g13g35 + g14g24 + g24g25 + g25g35 .

This relation admits g13 = g14 = g24 = g25 = g35 = 1 as a peculiar solution. We will work with

the corresponding rational embedding of C2 into Y5 = C5, which is given by

(57) D : (x, y) 7−!
(

y13, y14, y24, y25, y35
)
=

(
x − 1 ,

x (y − 1)

x − y
,

y

x − y
,

1

y − 1
,

x − y

y − 1

)
.

One verifies that

D∗
(
W+Y5

)
=W

( (
1

y − 1
,

y

y − 1

)
,

(
1

x − 1
,

x

x − 1

)
,

( y

x − y
,

x

x − y

)

(y − 1

x − y
,

x − 1

x − y

)
,

( x (y − 1)

x − y
,

y (x − 1)

x − y

) )

from which it follows that d
(
Ui,1 ◦ D

) ∧ d
(
Ui,2 ◦ D

)
= 0 for i = 1, . . . , 5. This implies that the

pull-back under D of the 2-codimensional web W+Y5
is only 1-codimensional. More precisely,

setting ̟i = Ui,1 ◦ D for i = 1, . . . , 5, that is

̟1 =
1

y − 1
, ̟2 =

1

x − 1
, ̟3 =

y

x − y
, ̟4 =

y − 1

x − y
, ̟5 =

x(y − 1)

x − y
,

it comes that D∗
(
W+Y5

)
is the following web:

B =W
(
̟i

)5

i=1
=W

(
1

y − 1
,

1

x − 1
,

y

x − y
,

y − 1

x − y
,

x(y − 1)

x − y

)
.

By using the criterion of [Pi5, §3.5.2], this web is easily seen to be a model of Bol’s web and, as

such, carries a version of Abel’s 5-terms identity of the dilogarithm. We are going to prove that

the latter can be obtained in a very simple way from the logarithmic identity (48).

We identify all the target affines spaces of the first integrals Ui to a same affine space with

standard coordinates denoted by u1, u2. Then one verifies that for any i = 1, . . . , 5, the image of

Ui ◦ D is the line cut out by 0 = 1 + u1 − u2 which is parametrized by L : z 7! (z, z + 1). One has

L∗(δ) =
1

2

(
Log(z)

dz

1 + z
− Log(z + 1)

dz

z

)
= −dR(z)

where R stands for the ‘cluster dilogarithm’ defined by

R(u) =
1

2

∫ u

0

(
Log(1 + t)

t
− Log(t)

1 + t

)
dt for u ≥ 0 .

Pulling-back the identity 0 = 1
2

∑5
i=1 ǫiU

∗
i

(
Log(x)

dy
y − Log(y)dx

x

)
under D is written

ω∗1
(
dR

) − ω∗2
(
dR

)
+ ω∗3

(
dR

) − ω∗4
(
dR

)
+ ω∗5

(
dR

)
= 0
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or equivalently, in integrated form

(58) R

(
1

y − 1

)
− R

(
1

x − 1

)
+ R

(
y

x − y

)
− R

(
y − 1

x − y

)
+ R

(
x(y − 1)

x − y

)
=

π2

3

a functional relation which is identically satisfied on any complex domain containing the ‘triangle’

{(x, y) ∈ R2
∣∣∣ 1 < y < x }. It is a version of Abel’s identity of the dilogarithm. We will denote this

identity as well as the corresponding AR of B by AbR.

More is true: it can be verified that given any 1-AR of a 3-subweb of W+Y5
, its pull-back under

D is an abelian relation of the corresponding 3-subweb of B. With a few more computational

checks, we get the following

Proposition 5.2. The pull-back under D gives rise to two linear isomorphisms
〈
AR1

δ

〉 ≃ 〈
AbR

〉
and AR1

C

(
W+Y5

) ≃ ARC
(
B
)

which actually turn out to be isomorphisms of S5-representations.

The last statement of this proposition requires a few lines of explanation. The point is that the

group W ′ = 〈σ1, . . . , σ4〉 ⊂ Bir
(
Y5

)
lets invariant the image of the map (57) hence gives rise to a

birational action on the source space ofD. More precisely, one verifies that setting

σ̃1(x, y) = (x/y, 1/y) σ̃2(x, y) = (y, x) σ̃3(x, y) = (1 − x, 1 − y) σ̃4(x, y) = (1/x, 1/y)

then, as rational maps from C2
d C5 = Y5, one has D ◦ σ̃i = σi ◦ D for i = 1, . . . , 5. The

birational action W ′
! Bir

(
C2) gives rise to a linear action ofS5 on AR

(
B
)
. This gives a precise

and rigorous meaning to the last assertion of Proposition 5.2.

Remark 5.3. 1. B is isomorphic to the web WM0,5
defined on the moduli space M0,5 by the

five forgetful maps M0,5 ! M0,4. Up to this isomorphism, the birational action of W ′ ≃ S5

on C2 corresponds to the one of Aut(M0,5) ≃ S5 onM0,5. That AR
(
WM0,5

)
is isomorphic to

V5
[221]
⊕ V1

[15]
as a S5-representation is due to Damiano (see [Pi5, Remark 3.1]).

2. We give above a new derivation of the five-term identity of the dilogarithm (in the form (58))
from the differential relation in five variables (48) which involves only logarithms and monomial
functions. As far we know, this is new. It would be interesting to investigate whether the latter
relation in five variables can be obtained formally from Abel’s identity in two variables or not.

3. The identities (48) and (58) admit real analytic versions which are globally satisfied. Set-
ting δ+ = 1

2

(
Log|x|dy/y − Log|y|dx/x

)
, one verifies that

∑
i=1 ǫiU

∗
i

(
δ+

)
= 0 holds true iden-

tically on Y5. Similarly, if one defines the ‘positive cluster dilogarithm’ by setting R
+(u) =

1
2

∫ u

0

(
Log|1 + t|/t − Log|t|/(1 + t)

)
dt, then for each connected component O of the complement

in R2 of the arrangement of lines cut out by xy (y − 1) (x − 1) (x − y) = 0, there exists an integer

nO ∈ Z such that
∑5

i=1 ǫi R
+(̟i) ≡ π2

3
nO on O.

6. Recovering the functional identities HLogdP4
’s from HLOGY5

In this section, we state and prove a precised version of the seventh point of Theorem 1.1 which

is about the fact that any weight 3 hyperlogarithmic functional identity HLogdP4
of an arbitrary

but fixed smooth del Pezzo quartic surface dP4 can be recovered from the identity between 2-

differential forms HLOGY5
.
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We will first argue symbolically: we will associate a symbolic relation to HLOGY5
and will

explain how to get from it the symbol corresponding to the hyperlogarithmic identity HLog(dPd).

Then we will argue more concretely, in terms of abelian relations.

6.1. Arguing symbolically. Let � stand for the quadrilateral cut out by xyz(z + x − y) = 0 in

the homogeneous coordinates [x : y : z] on P2. Then the space H� = H0(P2,Ω1
P2(Log�)

)
is of

dimension 3 and admits the following logarithmic 1-forms as a basis:

ν1 = dLog(x) =
dx

x
, ν2 = dLog(y) =

dy

y
and ν3 = dLog(1 + x − y) =

dx − dy

1 + x − y
.

Recall the 2-form Ω defined in (36) (see also ). To it, we associate the symbol

S(Ω) = ν1 ⊗
(
ν2 ∧ ν3

) − ν2 ⊗
(
ν1 ∧ ν3

)
+ ν3 ⊗

(
ν1 ∧ ν2

) ∈ H� ⊗ ∧2H� .

Let ι� : H� ֒! Ω1
C(P2)

be the natural embedding into the space of rational 1-forms on the

projective plane. For p ∈ P2 \ �, one has a well-defined integration map IIp : H� ! OP2,p,

ν 7!
(

IIp : z 7!
∫ z

p
ν
)

from which one gets a realization map

Rp = IIp ⊗ ∧2ι� : H� ⊗ ∧2H� ! Ω
2
P2,p

which associates to a tensor νa ⊗ (νb ∧ νc) the germ of 2-form
( ∫ •

p
νa

)(
νb ∧ νc

)
at p. Then it is

clear that the germ of Ω at p is the image of the symbol S(Ω) by the realization map Rp.

For any i ∈ [[10]], the pull-back U∗i
(
Ω
)

has the same nature on Y5 that Ω has: it is a linear

combination of 2-forms of the type Log( f )
(
dLog(g) ∧ Log(h)

)
hence one can associate a symbol

to it. For i = 1, . . . , 10, let ηi be the logarithmic derivative of the polynomial ζi defined in (17):

one has

η1 =
dy13

y13
, η2 =

dy14

y14
, η3 =

dy24

y24
, η4 =

dy25

y25
, η5 =

dy35

y35
and ηk+5 =

dPk

Pk

for k = 1, . . . , 5. Let HY5
be the vector space admitting the ηi’s as a basis:29

HY5
=

10⊕

i=1

C ηi .

For any i ∈ [[10]] and any s = 1, 2, 3, one can express the logarithmic derivative of Ui,s as a

linear combination in the ηk’s, with non-zero coefficients equal to ±1. For instance, for i = 1, one

has

dLog
(
U1,1

)
= η4 , dLog

(
U1,2

)
= η3 + η5 and dLog

(
U1,3

)
= η6 .

Accordingly, the ‘symbol’ we associate to U∗
1
(Ω) is the element of HY5

⊗ ∧2HY5
given by

S
(
U∗1

(
Ω
))
= η4 ⊗

(
(η3 + η5) ∧ η6

) − (η3 + η5) ⊗ (
η4 ∧ η6

)
+ η6 ⊗

(
η4 ∧ (η3 + η5)

)
.

The ηi’s being closed, each is locally integrable on Y5. For any z ∈ Y5 \ Z, one thus has a

realization map

(59) Rz : HY5
⊗ ∧2HY5

−! Ω2
Y5,z

29For concreteness, one can take for H the subspace spanned by the ηk’s in Ω2
C(Y5)

. But we believe it is better to

deal with H as an abstract vector space and not as a subspace of a bigger space.
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which associates to a tensor ηa ⊗ (ηb ∧ ηc) the germ of 2-form (
∫ •

z
ηa)ηb ∧ ηc at z.

The nine other symbols S(U∗i (Ω)
)
, i = 2, . . . , 10 can be computed easily. Recall (see (38)) that

ǫi = −1 for i ∈ {2, 4, 7, 9}, and ǫi = 1 otherwise.

Lemma 6.1. In HY5
⊗ ∧2HY5

, one has
∑10

i=1 ǫi S
(
U∗i

(
Ω
))
= 0.

Proof. This follows from the fact that
∑10

i=1 ǫi U∗i
(
Ω
) ≡ 0 and that the realization map (59) is

injective. But a more elementary proof is given by expressing the sum S =
∑10

i=1 ǫi S
(
U∗i

(
Ω
))

in

the basis ηi ⊗ (η j ∧ ηk) of HY5
⊗ ∧2HY5

, for i ∈ [[10]] and j, k such that 1 ≤ j < k ≤ 10. Then one

obtains that S = 0 by pure elementary linear algebra. �

From the very definition of Ω (see the formulas at the beginning of §3.1.2), it can be easily

verified that the symbol of Ω not only is an element of H� ⊗ ∧2H� but actually lies in ∧3H�, the

latter being seen as a subspace of H� ⊗H� ⊗H�. It follows that for any i ∈ [[10]], S
(
U∗i

(
Ω
))

lies

in ∧3HY5
from what we deduce immediately the

Lemma 6.2. The symbolic identity of Lemma 6.1 actually lies in ∧3HY5
. One has

(60)

10∑

i=1

ǫi S
(
U∗i

(
Ω
))
= 0 in ∧3 HY5

.

Remark 6.3. In [CP], that HLog
(
dP4

)
is satisfied is proven by showing that its symbolS(HLog

(
dP4

))

vanishes in the third wedge product of the space of global 1-forms on dP4 with poles of order at
most 1 along the lines contained in dP4. Hence, the vanishing of S(HLog

(
dP4

))
= 0 is for-

mally analogous to the vanishing of
∑10

i=1 ǫi S
(
U∗i

(
Ω
))

. However, there is a significant distinction:
S(HLog

(
dP4

))
is a sum of 10 weight 3 tensors, all of which are integrable in the sense of Chen,

meaning that the iterated integrals associated with each tensor are homotopy invariant (see [Br,

§6] for further details). This is not the case for the symbols ǫi S
(
U∗i

(
Ω
))

as some (if not all) of
them are not integrable. Therefore, (60) represents an algebraic identity that does not have an
analytic counterpart in functional form.

From the material presented in §2.3.5, we get that the map

(61) FSS : (x, y) 7−!
(

Y13 , Y14 , Y24 , Y25 , Y35

)

with

Y13 =
y (a + 1) (ay − bx − a + b + x − y)

(x − y) (b − y)
Y14 =

ax (y − 1) (b + 1)

(b + a) (x − y)

Y24 =
(b − y) (−1 + x) b

(b + a) ((1 − x) b + x + (−1 + y) a − y)
Y25 =

(a − x) (x − y)

(b + 1) x ((1 − x) b + x + (−1 + y) a − y)

and Y35 =
(ay − bx) (b + a)

x (b + 1) (b − y)
.

is a birational model of Serganova-Skorobogatov embedding fSS : dP4 ֒! Y5.

By direct computation, we get that F∗SS

(
WGM

Y5

)
coincides with the 10-web on P2, denoted by

Wa,b, which is the direct image of del Pezzo’s webWdP4
by the blow-up map β = βa,b : dP4 ! P2

at the five points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1] and [a : b : 1]: one has

(62) Wa,b = F∗SS

(
WGM

Y5

)
= β∗

(
WdP4

)
.
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Actually, we have that for any i = 1, . . . , 10, one has F∗SS

(
dUi,1 ∧ dUi,2

)
= 0 hence the map

Ui ◦ FSS has rank 1 (at the generic point of C2) and defines foliation F∗SS

(FUi

)
which coincides

with one of the web (62). More explicitly, setting F f for the foliation defined by the level subsets

of f , one has

F∗SS

(FUi

)
= Fφi

for i = 1, . . . , 10, where the φi’s are the following rational functions

φ1 =
(x − 1)(bx − ay)

(x − a)(x − y)
φ6 = y

φ2 =
(y − 1)(bx − ay)

(y − b)(x − y)
φ7 = x

φ3 =
(y − 1)(x − a)

(x − 1)(y − b)
φ8 =

x

y

φ4 =
y(x − a)

x(y − b)
φ9 =

x − 1

y − 1

φ5 =
y(x − 1)

x(y − 1)
φ10 =

b(x − a)

a(y − b)
.

(compare with the last pages of [Pi5, §4.5]).

The preimage by FSS of the divisor Z of Y5 defined in (18) is the divisor Z̃ defined as the union

of the ten irreducible divisors Z̃i = { χi = 0 } ⊂ C2 for i = 1, . . . , 10, where the χi’s are given by :

χ1 = x χ2 = y χ3 = x − 1 χ4 = y − 1 χ5 = a − x χ6 = y − b χ7 = x − y

χ8 = ay − bx χ9 = ay − bx − a + b + x − y χ10 = ab(x − y) + (b − a)xy + ay − bx .

The logarithmic derivatives λi = dLog(χi) for i ∈ [[10]] are linearly independant over C then

span a subspace, denoted by Ha,b, of the space of rational 1-forms on C2. All the pull-backs

η̃k = F∗SS (ηk) of the rational 1-forms ηk’s under the map (61) are elements of Ha,b and it is

straightforward to compute them explicitly but we will not even need that. Just for the record, we

state the

Lemma 6.4. The pull-back under FSS induces a linear isomorphism F∗SS : HY5

∼
−! Ha,b which

is defined over Z with respect to the bases (ηk)10
k=1

and (λi)
10
i=1

of HY5
and Ha,b respectively.

Setting

ui,s = F∗SS

(
Ui,s

)
= Ui,s ◦ FSS

for i ∈ [[10]] and s = 1, 2, 3, taking the pull-back of (60) under FSS , one gets that the following

relation holds true in ∧3Ha,b:

(63)

10∑

i=1

ǫi

(dui,1

ui,1
∧ dui,2

ui,2
∧ dui,3

ui,3

)
= 0 .

Since everything is explicit, (63) can be made explicit as well. For instance, for i = 6, one has

U6 ◦ FSS =

(
b + a

(y − 1) a
,

(a + 1) y

(y − 1) a
,

b − y

(y − 1) a

)

hence

(64)
du6,1

u6,1
= − dy

y − 1
,

du6,2

u6,2
=

dy

y
− dy

y − 1
and

du6,3

u6,3
=

dy

y − b
− dy

y − 1
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from what it follows that

du6,1

u6,1
∧ du6,2

u6,2
∧ du6,3

u6,3
=

dy

y
∧ dy

(y − 1)
∧ dy

(y − b)
.

The computations of all the others wedge products

̟i = d ln(ui,1) ∧ d ln(ui,2) ∧ d ln(ui,3) ∈ ∧3Ha,b

are as straightforward as the one above. Setting

r1 = r6 = b , r2 = r7 = a , r3 = r8 =
a

b
, r4 = r9 =

a − 1

b − 1
and r5 = r10 =

b(a − 1)

a(b − 1)
,

one obtains that for any i ∈ [[10]], one has

̟i =


dφi

φi
∧ dφi(

φi − 1
) ∧ dφi(

φi − ri

)
 .

In other terms, for any i, ̟i is equal to the symbol of the weight 3 iterated integral AH3
i

(
φi

)

on C2, where AH3
i stands for the complete antisymmetric weight 3 hyperlogarithm on P1 with

respect to the 4-tuple of points (0, 1, ri,∞) (see [CP, §2.1]). Injecting this in (63) gives

10∑

i=1

ǫi

(
dφi

φi
∧ dφi

(φi − 1)
∧ dφi(

φi − ri
)
)
= 0 .

As explained in [CP], this is equivalent to the fact that the weight 3 hyperlogarithmic identity

10∑

i=1

ǫi AH3
i

(
φi

)
= 0 ,

that is HLog
(
dP4

)
, holds true.

6.2. From HLOGY5
to HLog

(
dP4

)
, by manipulating abelian relations. While we consider

that the above symbolic derivation of of HLog
(
dP4

)
from HLOGY5

is pretty much clear, we have

a feeling that it is somehow not very concrete. In this subsection, we describe succinctly how to

obtain HLog
(
dP4

)
from HLOGY5

by only working with genuine abelian relations. To simplify

the notation, we write HLOG instead of HLOGY5
below. Non justified arguments are easy to

check (and this is left to the reader...).

Let F be one of the polynomials ζk defined in (17), then ResF = ResF
(
HLOG

)
is a rational 2-

AR ofWGM
Y5

carried by the 5-subwebWGM
Y5,F
=W

(
U j

∣∣∣ j ∈ JF
)

for a certain subset JF ⊂ [[10]] of

cardinality 5 (see §3.2.1). Moreover, its non-trivial components, denoted by ResF, j for j ∈ JF , are

linear combinations with coefficients 0, 1 or −1 of the wedge products
(
dU j,a ∧dU j,b

)
/(U j,adU j,b)

for a, b such that 1 ≤ a < b ≤ 3 (see Corollary 3.10). Replacing each such term by its primitive
1
2

(
ln(U j,a)d ln(U j,b) − ln(U j,b)d ln(U j,a)

)
, one obtains a 1-AR denoted by

∫
ResF ∈ AR1(WGM

Y5

)
,

which is such that d
∫

ResF = ResF . The pull-back of it under FSS is a 1-abelian relation for

F∗SS

(
WY5,F

)
=W

(
φ j

∣∣∣ j ∈ JF
)

which is closed hence admits a primitive, that we will denote by
∫

F∗SS

[∫
ResF

]
.
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As an explicit example, let us consider the case when F = ζ10 = P5 = 1+y14−y13y24. This case

is completely similar30 to the one of the web W+Y5
whose ARs have been considered in Proposition

3.11 and Proposition 3.13 above. When F = P5 :

• the polynomial F = P5 is a factor of Ui,s for (i, s) = ( j, 3) with j ∈ JF = {5, 6, 7, 8, 9}.
• moreover for any j ∈ JF , F appears in the numerator of U j,3, with multiplicity 1. It

follows that ResF is the rational 2-abelian relation 0 =
∑

j∈JF
ǫ j U∗j

(
η
)

(where η is the

rational 2-form defined in (45));

• its primitive
∫

ResF is the 1-abelian relation 0 =
∑

j∈JF
ǫ j U∗j

(
δ
)

where δ is the privileged

primitive of η defined in (47);

• then it is not difficult to compute the pull-backs of the components
∫

ResF, j under FSS .

One obtains that, for any j ∈ JF , up to the addition of 1-forms of the type d ln(φ j − z j)

with z j ∈ {0, 1, r j}, one has

(65) F∗SS

(∫
ResF, j

)
=

1

2

(
ln(φ j)

φ j − 1
−

ln(φ j − 1)

φ j

)
dφ j = φ

∗
j

(
dR̃

)
.

where R̃ : x 7!
1
2

∫ x

1

(
ln (u)/(u − 1) − ln (u − 1)/u

)
du is a version of Rogers’ dilogarithm

defined on [1,+∞[. After integrating the identity 0 =
∑

j∈JF
ǫ jF
∗

SS

(∫
ResF, j

)
, one obtains

the following explicit form for the identity corresponding to the 0-AR
∫

F∗SS

(∫
ResF

)
:

(66) R̃

(
y(x − 1)

x(y − 1)

)
+ R̃ (y) − R̃ (x) + R̃

(
x

y

)
− R̃

(
x − 1

y − 1

)
= 0 ,

a relation satisfied by all x, y ∈ [1,+∞[ such that 1 < y < x.

Given ξ ∈ P1 \ {0, 1,∞}, one sets Σξ = {0, 1, ξ,∞} and for i ∈ [[10]], one denotes by Hi the

pull-back under φi of the space of holomorphic 1-form on P1 \ Σri with logarithmic poles at the

points of Σri :

Hi = φ
∗
i H0

(
P1,ΩP1

(
LogΣri

)) ⊂ Ha,b .

This space admits dφi/φi, dφi/(φi − 1) and dφi/(φi − ri) as a basis and for any σ,σ′ ∈ {0, 1, ri},
one defines a weight 2 antisymmetric symbol by setting

Ri
σ,σ′ =

( dφi

φi − σ

)
∧

( dφi

φi − σ′
)
= φ∗i

(( dz

z − σ
)
∧

( dz

z − σ′
))
∈ ∧2Hi ⊂ ∧2Ha,b .

Clearly, each Ri
σ,σ̃ is the symbol of a dilogarithmic function composed with φi. For instance, it

follows from (65) that R6
0,1

is the symbol of the term R̃(y) appearing in the analytic expression

(66) of
∫

F∗SS

(∫
ResF

)
.

For any i, the determination of the weight 2 symbol of the i-th components of the abelian re-

lations
∫

F∗SS

(∫
Resζk

)
of Wa,b =W

(
φ1, . . . , φ10

)
for any ζk can be obtained by means of straight-

forward formal computations from the decompositions of the logarithmic derivatives of the com-

ponents of the first integrals Ui ofWGM
Y5

. As an example, below we give details in the case i = 6.

30This not a coincidence. Indeed, since the Weyl group WD5
≃ Aut(Y5) acts transitively on the set of weights of

the half-spin representation, it acts similarly on the set of weight divisors Dw ⊂ Y5 hence on the set of residues of

HLOGY5
along the latter (possibly up to rescaling but this is not relevant).
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Setting ∆i =
(
d ln Ui,s

)3
s=1 for i = 1, . . . , 10, one has the following expressions of the d ln Ui,s’s

as linear combinations of the ηk’s:

∆1 =
(
η4, η5 + η3, η6

)

∆2 =
( − η1, η5 − η1 + η2, η7 − η1

)

∆3 =
(
η3, η4 + η2, η8

)

∆4 =
( − η5,−η5 + η4 + η1,−η5 + η9

)

∆5 =
(
η2, η3 + η1, η10

)

∆6 =
(
η7 − η2 − η9, η8 + η1 − η2 − η9, η10 − η2 − η9

)

∆7 =
(
η6 − η3 − η9,−η3 + η8 − η9,−η3 + η10 + η4 − η9

)

∆8 =
(
η6 + η1 − η9, η7 − η9, η5 + η10 − η9

)

∆9 =
(
η6 − η8 + η2, η7 + η3 − η8, η10 − η8

)

∆10 =
(
η6 − η5 − η8, η7 − η5 + η4 − η8,−η5 − η8 + η9

)

The indices k such that the 6-th component of the residue

Resk = Resζk

(
HLOGY5

) ∈ AR2
(
WGM

Y5

)

is non-trivial are exactly the ones such that ηk appears in the expression of ∆6 above. Namely, the

set of such indices is K6 = {1, 2, 7, 8, 9, 10}. For each k ∈ K6, let κk ∈ {−1, 0, 1}3 be the triplet

obtained from ∆6 be deriving it formally with respect to ηk (the latter hence being then considered

as a symbolic indeterminate). One has

κ1 = (0, 1, 0) κ2 = (−1,−1,−1) κ7 = (1, 0, 0)

κ8 = (0, 1, 0) κ9 = (−1,−1,−1) κ10 = (0, 0, 1) .

From the formula (35) for Ω, it follows that for any κk = (αk, βk, γk), the 6-th component Resk,6 =

of the rational 2-abelian relation Resk is

Resk,6 = αk

(
dU6,2

U6,2
∧ dU6,3

U6,3

)
− βk

(
dU6,1

U6,1
∧ dU6,3

U6,3

)
+ γk

(
dU6,1

U6,1
∧ dU6,2

U6,2

)
.

Each Resk,6 is a rational 2-form, but the expression above, up to a scaling factor (equal to 1/2)

can also be seen as an element of ∧2HY5
, which will be denoted by 1

2
Res

symb
k,6 . Using (64), for any

k ∈ K6 one can compute the pull-back ̺6
k = F∗SS

(1
2
Res

symb
k,6

)
which belongs to ∧2H6. One has

̺6
k =

αk

2

((dy

y
− dy

y − 1

)
∧

( dy

y − b
− dy

y − 1

))
− βk

2

((
− dy

y − 1

)
∧

( dy

y − b
− dy

y − 1

))

+
γk

2

((
− dy

y − 1

)
∧

(dy

y
− dy

y − 1

))
.

Expressed in terms of the dilogarithmic symbols R6
σ,σ′ defined above and considering that

r6 = b, one obtains

̺6
k =

αk

2

(
R6

0,b − R
6
0,1 − R

6
1,b

)
+
βk

2

(
R6

1,b

)
+
γk

2

(
R6

0,1

)
.
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hence

̺6
1 =R

6
1,b ̺6

2 = −R6
0,b ̺6

7 = −R6
0,1 − R6

1,b + R
6
0,b(67)

̺6
8 =R

6
1,b ̺6

9 = −R6
0,b ̺6

10 = R
6
0,1 .

One can verify that for any k ∈ K6, ̺6
k is also the symbol of the dilogarithmic function which is

the 6-th component of the 0-AR
∫

F∗SS

(∫
Resζk

)
. Then using (67), straightforward computations

give us that the symbol of the sixth component of the sum

(68)

10∑

k=1

F∗SS

(
ηk

) ∫
F∗SS

(∫
Resk

)

is equal to
( dy

y − b

)
⊗ R0,1 −

( dy

y − 1

)
⊗ R0,b +

(dy

y

)
⊗ R1,b .

This is the symbol of the complete antisymmetric weight-3 hyperlogarithm AH3(φ6) with respect

to the set Σr6
= Σb = {0, 1, b,∞} ⊂ P1 (cf. [CP, §2.1.3]). Through similar and straightforward

computations, one can verify that the same result holds for each component of equation (68). It

follows that the 1-abelian relation (68) of Wa,b corresponds to the derivative of the hypertriloga-

rithmic functional abelian relation Hlog(dP4). This leads to the justification of the formula:

(69) Hlog(dP4) =

10∑

k=1

∫ [
F∗SS

(
ηk

)
∫

F∗SS

(∫
Resk

(
HLOGY5

))]

which summarizes the preceding discussion on how the weight-3 hyperlogarithmic functional

identity Hlog(dP4) can be derived from the differential identity between differential 2-form with

logarithmic coefficients HLOGY5
.

7. The (r − 3)-rank and the (r − 3)-abelian relations ofWGM

Yr
for r = 4, . . . , 7

In this section, we extend some of the results obtained above to the cases r = 6 and r = 7. The

current proofs are based on explicit computations carried out using a computer algebra system.

These computational details are omitted here, but we intend to provide conceptual proofs in a

future work.

7.1. In addition to the notations introduced in the Introduction, we use also the following ones:

• we denote by D•r the 1-marked Dynkin diagram associated to the simple Lie group Gr,

with one marked vertex corresponding to the maximal parabolic subgroup Pr ⊂ Gr such

that Gr = Gr/Pr. We denote by γr the dimension of Gr. Then γr − r is equal to the

dimension of the quotient space Y r , denoted by yr. One has

γr = dimGr and yr = dimY r = γr − r ;

• Vr stands for the corresponding minuscule representation (of dimension υr equal to 10,

16, 27 and 56 for r = 4, 5, 6, 7 respectively);
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• ∆r stands for the moment polytope of Gr, which coincides with the weight polytope in

h∨r (R) of the minuscule representation Vr. The series of ∆r’s coincides with the one of

Gosset’s polytopes (r − 4)21. Each admits two kinds of facets, some (r − 1)-simplices

and some (r − 1)-cross-polytopes (also known as ‘orthoplexes’). Only the latter areW-

relevant. The first two of the series are also known by other names: ∆4 is the hypersym-

plex ∆2,5 and ∆5 is the 5-demihypercube.

• Lr (resp.Kr) denotes the number of lines (resp. of conic fibrations) on a fixed smooth del

Pezzo surface dP9−r;

• we recall that there are natural bijections between Lr and the set of weights Wr of Vr

which is also the set of vertices V0(∆r) of the weight polytope. Hence one has

ℓr =
∣∣∣Lr

∣∣∣ =
∣∣∣V0(∆r)

∣∣∣ = dim Vr = υr .

Similarly, the set Kr of conic classes on dP9−r identifies with the one of cross-polytope

facets of ∆r.

r D•r
υr = dim Vr

=
∣∣∣Lr

∣∣∣ = ℓr
Gr ⊂ PVr γr = dimGr yr = dimY r κr =

∣∣∣Kr

∣∣∣

4 10 G2
(
C5) ⊂ P9 5 2 5

5 16 S5 ⊂ P15 10 5 10

6 27 OCP2 ⊂ P26 16 10 27

7 56 Fr ⊂ P55 27 20 126

Many features and numerical quantities of the objects considered above are given in the table

above in which OP2 ⊂ P26 stands for the Cayley plane over the complex octonions O and where

Fr ⊂ P55 denotes the 27-dimensional Freudenthal variety E7/P6. Both varieties are considered in

their fundamental embeddings which can also respectively be described as the projectivizations

of the exceptional rank 3 complex Jordan algebra J = Herm3
(
O

)
and of the space Z2(J) of Zorn

2 × 2 matrices over J.

The Gelfand-MacPherson web we are interested in lives on the quotient space Yr = Gr//Hr.

Given an orthoplex facet F of ∆r, , there is a commutative diagram:

Gr

��

ΠF
//❴❴❴❴❴ QF

��

Y r
πF

//❴❴❴❴❴ YF
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in which the vertical maps are the quotient maps, and the horizontal maps are the corresponding

face maps. It can be verified that QF is a smooth hyperquadric in P2r−3 and that YF embeds into

Pr−3 as a Zariski open subset. With respect to this embedding, one has Y×F = Pr−3 \ HF where

HF is an arrangement of r − 1 hyperplanes in general position.

We have that the corresponding Gelfand-MacPherson web considered here

WGM
Yr
=W

(
πF

∣∣∣ F ∈ Kr

)

is a κr-web of codimension r − 3 on Y rwhich is a rational variety of dimension yr equal to 2,5,10

and 20 for r = 4, 5, 6 and 7 respectively. Since the hyperplanes of Hr are in general position, for

some homogeneous coordinates u0, u1, . . . , ur−3 on Pr−3, one can assume thatHr is cut out by

u0u1u2 . . . ur−3
(
u0 + u1 + · · · + ur−3

)
= 0 .

7.1.1. Explicit birational models of WGM

Yr

for r = 6, 7. The approach used above to study

WGM
Y5

and its abelian relations relies on an explicit birational model of this web, obtained via

a concrete birational parametrization of the spinor variety S5 embedded in the projectivization

of the half-spin representation. A key observation is that, for r = 6, 7 as well, one can construct

similar (birational) parametrizations of each corresponding homogeneous space Gr, considered

in their respective minuscule embeddings. This allows the same strategy, based on explicit for-

mal computations, assisted by a computer algebra system, to be effectively extended to these

higher-rank cases. In this subsection, we succinctly describe the parametrizations of G6 = OP2

and G7 = Fr that we have worked with. Our main reference for the material presented here is

Yokota’s remarkable book [Yo].

In order to obtain, in each case, explicit and well-behaved formulas (defined over R, say) for the

action of the Cartan torus, we considered a real rational parametrization of the split real form GR
r

of the complex homogeneous space Gr, embedded into the projectivization of the split real form

VRr of the corresponding (complex) minuscule representation Vr. To this end, we worked with

the algebra Os of split (real) octonions rather than with the usual (Hurwitz) octonion algebra O.

This choice is ultimately inconsequential, since tensoring Os and O with C yields two isomorphic

complex algebras. In what follows, we will work with the complex algebra O = Os that we will

call ‘the algebra of complex octonions’.

Let us consider the following two invertible linear maps from R8 into itself.

φ : (xi)
7
i=0 7−!

(
x0 − x7, x1 − x6, x2 − x5, x3 − x4, x3 + x4, x2 + x5, x1 + x6, x0 + x7

)

ψ : (ui)
7
i=0 7−!

1

2

(
u0 + u7 , u1 + u6 , u2 + u5 , u3 + u4 , u4 − u3 , u5 − u2 , u6 − u1 , u7 − u0

)

These maps are inverses of each other and denoting by ∗ the usual octonionic product on O = R8,

one defines Os as R8 endowed with the product given by

(70) u · v = φ(ψ(u) ∗ ψ(v)
)
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for any u, v ∈ Os. Then the unit element 1, the conjugate u and the norm ‖ u ‖2 of any element

u = (ui)
7
i=0

are given respectively by

1 = (1, 0, 0, 0, 0, 0, 0, 1)

u =
(

u7 , −u1 , −u2 , −u3 , −u4 , −u5 , −u6 , u0
)

and ‖ u ‖2= u0u7 + u1u6 + u2u5 + u3u4 .

(We thus have u · u = u · u = ‖ u ‖2 1 for every u).

For O one of the three algebras O, Os or O, with definition field k = R or C, we define the

space of hermitian 3 × 3 matrices with coefficients in O ≃ k8 by setting

Herm3(O) =




s1 v3 v2

v3 s2 v1

v2 v1 s3


∣∣∣∣∣

s1, s2, s3 ∈ k

v1, v2, v3 ∈ O


≃ k3 ⊕ O3 ≃ k27 ,

where the symbols ≃ stand for isomorphisms of k-vector spaces.31 In this definition, the di-

agonal coefficients si ∈ k have to be understood as scalar elements of O, that is modulo the

embedding k ֒! O, s 7−! s 1, where 1 is the unit element. In what follows, we set J, Js and

J for Herm3(O) when O = O, Os and O respectively. When O is unspecified, we will denote

J for Herm3(O) to shorten the notations. The algebra J being power-associative and of rank 3,

there exist homogeneous forms T,Q,N ∈ Sym
(
J∨

)
, of degree 1,2 and 3 respectively, such that

X3 − T (X)X2 + Q(X)X − N(X)1 = 0 for any X ∈ J. The linear map T is the natural trace and

when J = Herm3(O), the cubic form N is known as the ‘determinant’ . As such, it is denoted by

det : J ! k and is explicitly given by

det




s1 v3 v2

v3 s2 v1

v2 v1 s3



 = T
([

v1, v2, v3
]) −

3∑

i=1

si ‖ vi ‖2+s1s2s3 .

where [·, ·, ·] : J3
! k denotes the associated ‘triple product’ given by [u, v,w] = (uv)w− (uw)v+

(vw)u for u, v,w ∈ J. Then one can define ‘the adjoint X#’ of an element of J by setting

X# = X2 − T (X) X + Q(X) 1

for any X ∈ J. One has XX# = X#X = det(X) 1J for any X.

To deal with the case r = 7 and the 27-dimensional Freudenthal variety Fr = E6/P6 = G7 ⊂
PV7 ≃ P55, we need to go one step further and consider the space of Zorn 2 × 2 matrices with
coefficients in J, defined by

Z2(J) =

{ [
ζ1 Z1

Z2 ζ2

] ∣∣∣∣∣
ζ1, ζ2 ∈ k

Z1, Z2 ∈ J

}
≃ k ⊕ J ⊕ J ⊕ k ≃ k56 .

Then we consider the following Veronese maps

ν2
O : O ⊕ O −! J ν3

J : J −! Z2(J)

(u, v) 7−!


1 u v
u ‖ u ‖2 v · u
v v · u ‖ v ‖2

 X 7−!

[
1 X

X# det(X)

]
.

31Endowed with the symmetrization of the naive matricial product, Herm3(O) becomes a rank 3 Jordan algebra

over k, which is simple if O is non-degenerate (that is when O ∈ {O,O }). We will not really use these facts in this

paper, they are mentioned only in passing.



A STORY OF WEBS 59

These two Veronese maps are affine embeddings. The image of ν2
O (resp. of ν3

J) lands into the

algebraic subvariety of J (resp. ofZ2(J)) cut out by the quadratic equation X2 = T (X)X (resp. the

set of quadratic equations Z1Z2 = ζ1ζ21, Z#
1
− ζ1Z2 = Z#

2
− ζ2Z1 = 0).

Proposition 7.1. Over C, that is for O = O and J = J, the Zariski closures of the images of the
two Veronese maps above are the minuscule homogeneous spaces G6 and G7 in their minuscule
embeddings respectively. In other terms, one has :

ν2
O

(
O ⊕O

)
= OP2 ⊂ P(J) ≃ P26 and ν3

J

(
J
)
= Fr ⊂ P

(
Z2(J)

) ≃ P55 .

The reason for our choice of the specific form(70) of the octonionic product lies in the fact that

it yields particularly nice and fully explicit formulas– moreover defined over R– for the action of

the maximal torus of E6 and E7 on the associated minuscule representations V6 and V7.

Let us consider the following coordinates on the spaces of matrices introduced above:

• on J = Herm3(O), (ξ, v) with ξ = (ξi)
3
i=1
∈ k3 and v = (vi)

3
i=1
∈ O3 will stand for the

coordinates of the hermitian matrix

[
ξ1 v3 v2
v3 s2 v1
v2 v1 ξ3

]
;

• on Z2(J), the coordinates of the Zorn matrix
[
ζ1 Z1
Z2 ζ2

]
is the 4-tuple (ζ1, Z1, Z2, ζ2) with

ζi ∈ k and Zi ∈ J for i = 1, 2.

Starting from now, we deal with O = Os and J = Js = Herm3
(
Os

)
.

We start by considering the action of H4
>0
= { h = (hi)

4
i=1
∈ (

R>0
)4 }

on Os given by

(71) h · u = (
hi)

4
i=1 ·

(
u j

)8
j=1 =

(
h1u1 , h2u2 , h3u3 , h4u4 , h4

−1u5 , h3
−1u6 , h2

−1u7 , h1
−1u8

)

for any h = (hi)
4
i=1
∈ H4

>0
and any u = (ui)

8
i=1
Os. Clearly one has ‖h · u‖2= ‖u‖2 hence the com-

plexification of (71) yields the action of the Cartan torus of SO8(C) on its standard representation.

The triality on SO8(C) gives us the two following order 3 automorphisms ϕ : h 7! hϕ and

ψ = ϕ2: h 7! hψ of H4
>0

, defined by (with h = (hi)
4
i=1
∈ H4

>0
):

hϕ = ϕ(h) =

( √
h3√

h1 h2 h4

,

√
h1 h2 h3√

h4

,

√
h2 h3 h4√

h1

,

√
h1 h3 h4√

h2

)

and hψ = ψ(h) =

( √
h2 h4√
h1 h3

,

√
h2 h3√
h1 h4

,
√

h1 h3 h2 h4 ,

√
h4 h3√
h1 h2

)
.

The ‘positive torus’ H4
>0

acts on Js = Herm3(Os) by means of the following formula: one sets

(72) h · ( ξ , v
)
= h ·

(
ξ ,

(
v j

)3
j=1

)
=

(
ξ ,

(
h · v1 , hφ · v2 , hψ · v3

) )

for any h = (hi)
4
i=1
∈ H4

>0
and any (ξ, v) ∈ R3 × O3

s . We define another action of L2
>0
= { ℓ =(

l1, l2, l3
) ∈ (

R > 0
)3

∣∣∣ l1l2l3 = 1
} ≃ (

R>0
)2

on Js by setting

(73) ℓ · ( ξ, v )
=

( (
l2i ξi

)3
i=1 ,

(
l−1
i vi

)3
i=1

)
.

The actions (72) and (73) commute hence give rise to an action of the ‘positive torus’

T6
>0 = L2 ×H4 ≃ (

R>0
)6
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on Js given by

(74)
(
ℓ, h

) •

ξ1 v3 v2

v3 ξ2 v1

v2 v1 ξ3

 =



(l1)2 ξ1 hψ · v3 hϕ · v2

hψ · v3 (l2)2 ξ2 h · v1

hϕ · v2 h · v1 (l3)2 ξ3


.

We extend the preceding action to an action of the larger group

T7
>0 =

(
R>0

) × L2 ×H4 ≃ (
R>0

)7

onZ2
(
Js
)

by setting

(75)
(
t , (ℓ, h)

) ·
[
ζ1 Z1

Z2 ζ2

]
=


t ζ1 t1/3(ℓ, h

) • Z1

t−1/3(ℓ−1, h
) • Z2 t−1ζ2



for all (t ,
(
ℓ, h

))
in the group and all Zorn matrices

[
ζ1 Z1

Z2 ζ2

]
∈ Z2

(
Js
)
.

We have explicitly described several isomorphisms of R-vector spaces above: Os ≃ R8,

Js = Herm3
(
Os

) ≃ R3 ⊕ O3
s and Z2

(
Js
) ≃ R ⊕ Js ⊕ Js ⊕ R. From these, one gets well-defined

isomorphisms of real vector spaces

(76) Js ≃ R27 and Z2
(
Js
) ≃ R56 .

We denote by (Ei)
27
i=1

and (Z j)
56
j=1

the bases of Js andZ2
(
Js
)

corresponding to the canonical bases

of R27 and R56 respectively.

The genuine interest of working with the specific product (70) and the explicit actions (74)

becomes apparent by considering the content of the following

Proposition 7.2. 1. The images in GL
(
J
)

and GL
(
Z2

(
J
))

of the ‘positive tori’ T6
>0

and T7
>0

land
into E6 and E7 respectively. Consequently, up isogenies, the actions (74) and (75) are induced by
the ones of some Cartan subtori of these two simple complex Lie groups.

2. The bases (Ei)
27
i=1

and (Z j)
56
j=1

are bases of weight vectors for T6
>0

and T7
>0

respectively.

More precisely, for any i ∈ {1, . . . , 27}, there exists a weight wi = (wi,s)
6
s=1
∈ 1

2
Z6 such that for

any (ℓ, h) ∈ T6
>0

with ℓ = (ℓ1, ℓ2) ∈ (
R>0

)2 and h = (hi)
4
i=1
∈ (

R>0
)4, one has

(ℓ, h) • Ei = ωi(ℓ, h)Ei =
(
ℓ1
ωi,1ℓ2

ωi,2

4∏

k=1

hk
ωi,k+2

)
Ei .

And there is a similar statement for the action (75), but with weights in 1
2
Z7 ∪ 1

3
Z7.

Proof. The first point follows from the explicit description of the Lie groups E6 and E7 as sub-

groups of GL
(
J
)

and GL
(
Z2

(
J
))

, respectively, as found in [Yo]. For instance, direct formal com-

putations show that det
(
(ℓ, h) • Z

)
= det

(
Z
)

for every (ℓ, h) ∈ T6
>0

and Z ∈ J. Hence, the image

of this torus in GL
(
J
)
actually lies in E6, according to the definition of this group given in [Yo,

§3.1].32

32Actually, it was by examining the descriptions of the real parts of the Lie algebras of the Cartan tori of the

complex Lie groups E6 and E7 , as given on pages 94 and 139 of [Yo], that we derived the explicit formulas for the

torus actions (74) and (75).
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Direct formal computations, made possible by the completely explicit nature of the actions (74)

and (75), yield the second part of the proposition �

One can easily determine the weights of the representation for each case. For instance, when

r = 6, we obtain the following set of 27 pairwise distinct weights

(
2, 0, 0, 0, 0, 0

)
,
(

0, 2, 0, 0, 0, 0
)
,
(
− 2,−2, 0, 0, 0, 0

)
,
(
− 1, 0, 1, 0, 0, 0

)
,

(
− 1, 0, 0, 1, 0, 0

)
,
(
− 1, 0, 0, 0, 1, 0

)
,
(
− 1, 0, 0, 0, 0, 1

)
,
(
− 1, 0, 0, 0, 0,−1

)
,

(
− 1, 0, 0, 0,−1, 0

)
,
(
− 1, 0, 0,−1, 0, 0

)
,
(
− 1, 0,−1, 0, 0, 0

)
,
(

0,−1,−1

2
,−1

2
,

1

2
,−1

2

)
,

(
0,−1,

1

2
,

1

2
,

1

2
,−1

2

)
,

(
0,−1,−1

2
,

1

2
,

1

2
,

1

2

)
,

(
0,−1,

1

2
,−1

2
,

1

2
,

1

2

)
,

(
0,−1,−1

2
,

1

2
,−1

2
,−1

2

)
,

(
0,−1,

1

2
,−1

2
,−1

2
,−1

2

)
,

(
0,−1,−1

2
,−1

2
,−1

2
,

1

2

)
,

(
0,−1,

1

2
,

1

2
,−1

2
,

1

2

)
,

(
1, 1,−1

2
,

1

2
,−1

2
,

1

2

)
,

(
1, 1,−1

2
,

1

2
,

1

2
,−1

2

)
,

(
1, 1,

1

2
,

1

2
,

1

2
,

1

2

)
,

(
1, 1,−1

2
,−1

2
,

1

2
,

1

2

)
,

(
1, 1,

1

2
,

1

2
,−1

2
,−1

2

)
,

(
1, 1,−1

2
,−1

2
,−1

2
,−1

2

)
,

(
1, 1,

1

2
,−1

2
,−1

2
,

1

2

)
,

(
1, 1,

1

2
,−1

2
,

1

2
,−1

2

)
.

The weight polytope ∆6 is the convex enveloppe of these 27 points of R6. With the above list

of weights at hand, it is not difficult to obtain a new explicit list, of the sets of vertices of the facets

of ∆6 : for each facet F of ∆6, let IF be the set of indices i such that wi ∈ F. TheW-relevant

facets are 5-dimensional orthoplexes, with set of vertices of cardinality 10. For any such F, we

set C10
F = ⊕i∈IF CEi the linear projection ΠF : J ! C10

F is written Π̃F : (xi)
27
i=1

7−! (x j) j∈IF in the

linear coordinates associated to the basis (Ei)
27
i=1

of J. Then the 27 rational maps

Π̃F ◦ ν2
O : O ⊕Od P(C10

F ) ≃ P9
F

are the first integrals of Gelfand-MacPherson web on OP2, written in coordinates.

Given a web-relevant facet F associated to a conic class c ∈ K6, there is an involution on IF

when this set of indices is seen as a subset of L6, given by ℓ 7! ℓ′ = c − ℓ. Let JF ⊂ IF be a fixed

subset of cardinality 5 such that for any ℓ ∈ IF , either ℓ or ℓ′ is in JF . When seeing IF as a subset

of {1, . . . , 27}, we will denote this involution by i 7! i′F . To simplify the formulas, we will often

omit the subscript F in the lines below.

It can be verified that the closure in P9 of the image of Π̃F ◦ ν2
O

is a smooth hyperquadric

QF ⊂ P9 cut out by a quadric equation of the form

qF =
∑

j∈JF

ǫF, j x jx j′ = 0

with ǫF, j ∈ { ±1 } for any j ∈ JF . The basis (Ei)i∈IF actually is a weight basis for the action of the

Lie group SO(qF) of type D5 on C10
F , with the action of a Cartan torus HF ≃

(
C∗

)JF of SO(qF)

given by

(λ j) j∈JF · Ei =


λi Ei if i ∈ JF

λ−1
i′ Ei if i < JF .
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It can be verified that the action induced by the Cartan torus of E6 obtained by taking the com-

plexification of T6
>0

is linearly equivalent to the one described just above. Let Q⋆
F be QF with the

union of the ten hyperplane sections QF ∩ { xi = 0 } removed. Then HF acts nicely with finite

kernel on Q⋆
F , and gives rise to a rational morphism τF : Q⋆

F −! Y⋆
F = Q⋆

F/HF which can be

made explicit: fixing j0 ∈ JF , we set J∗F = JF \ { j0}. Then a birational model of τF is given by

τ̃F : P9
F d P3(77)

[
xi

]
i∈IF

7−!


x jx j′

x j0 x j′
0


j∈J∗F

.

It follows that, possibly up to multiplying some of the monomials xixi′/(xi0 xi′
0
) by -1, one

obtains a quotient morphism τF : Q⋆
F −! Y⋆

F with Y⋆
F ⊂ P3 equal to the complement of

the hyperplane arrangement H6 ⊂ P3 cut out by u0u1u2u3(u0 + u1 + u2 + u3) = 0 for some

homogeneous coordinates u0, . . . , u3 on P3.

The action of T6
>0

on O ⊕O induced by the action (75) is given by

(
a, b, h

)
(u, v) =

(
ab (hψ · u) , b−1(hϕ · v)

)
.

For (u, v) ∈ O ⊕O generic, one can find
(

a, b, h
) ∈ (

C∗
)6

such that
(

ũ , ṽ
)
=

(
a, b, h

)
(u, v) is in

‘normal form’, that is such that

(78) ũ =
(

ũ1, ũ2, ũ3, 1, 1, 1, 1, 1
)

and ṽ =
(

1 , ṽ2 , ṽ3 , ṽ4 , ṽ5 , ṽ6 , ṽ7 , ṽ8
)
.

Moreover, the element
(

a, b, h
) ∈ (

C∗
)6

satisfying (78) is essentially unique; that is, it is unique

up to the action of a certain finite subgroup of
(
C∗

)6
, which can be explicitly determined with-

out difficulty. It follows that the ten algebraically independent variables ũ1, ũ2, ũ3 and ṽ2, . . . , ṽ8

define a rational chart on the quotient Y6 of Cayley octonionic projective plane OP2 by the ac-

tion of the Cartan subgroup of E6 we are working with. Thus: (1) Y6 is rational; (2) Y6 =

Spec
(
C[ũ1, ũ2, ũ3, ṽ2, . . . , ṽ8]

)
is a birational model of it; and (3) up to the birational identification

Y6 ≃ Y6, the following map corresponds to a rational section of the quotient map OP2
d Y6:

σ6 : C6 = Y6 d OP2 ⊂ P26(79)
( (

ũi
)3
i=1 ,

(
ṽ j

)8
j=2

)
7−! ν2

O

(
ũ, ṽ

)

where ũ and ṽ stand for the two elements of O respectively defined by the LHS of the two equali-

ties in (78).

Post-composing σ6 with the linear projections Π̃F then with the rational model τ̃F (defined in

(77)) of the quotient maps τF : QF d P3 for all web-relevant facets F of ∆6, we obtain 27 rational

maps

(80) UF = τ̃F ◦ Π̃F ◦ σ6 : Y6 d P3

which define a web, noted by WGM
Y6

, which is the birational model ofWGM
Y6

on Y6 induced by the

birational identification Y6 ≃ Y6.

Thanks to our choice of the specific version (70) of the (split) octonionic product, the torus

actions (74) and (75) are defined over R, and so are the bases of weight vectors (Ei)
27
i=1

and

(Z j)
56
j=1

induced by the linear isomorphisms (76). This has the pleasant consequence that all the

first integrals UF are defined over R (in fact, over Z), which makes the effective computations we
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will perform from them – in order to study the ranks and abelian relations (ARs) of the web WGM
Y6

– significantly more efficient.

⋆

All the considerations and constructions above are not truly specific to the case r = 6; they

admit direct analogues in the case r = 7, which makes it possible to state the following result

uniformly for all r ∈ {4, 5, 6, 7}:

Proposition 7.3. Let Vr be the minuscule representation in whose projectivization the homoge-
neous space Gr = Gr/Pr, of dimension γr, embeds.

1. One can explicitly describe:

− a basis (ei)1≤i≤υr of Vr, yielding an isomorphism Vr ≃
⊕υr

i=1
C ei;

− an affine space Ar of dimension γr;

− an affine embedding νr = (νr,i)1≤i≤υr : Ar ! Vr,

with the property that the image of the projectivization [νr] : Ar ! PVr has Zariski closure equal
to Gr, that is,

[νr]
(
Ar

)
= Gr ⊂ PVr ≃ Pυr−1 .

2. Moreover, one can describe just as explicitly an action of Hr =
(
C∗

)r on Vr⊕υr

i=1
= C ei ,

satisfying the following properties:

− Each ei is a weight vector with respect to this action, associated to a weight ωi ∈ Qr,
which can be explicitly computed;

− TheW-relevant facets of ∆r = Conv
({ωi}υr

i=1

)
are entirely determined by the set of their

vertices: for each such facet F, let IF ⊂ {1, . . . , υr} be the subset of cardinality 2r − 2

consisting of the indices i such that the weight ωi associated to ei is a vertex of F;

− The set of κr subsets IF’s can be explicitly determined hence the linear projections

Π̃F : Vr = ⊕υr

i=1
C ei ! ⊕i∈IF C ei =: Vr,F

as well. The projectivizations of the compositions Π̃F ◦ νr : Ar ! VF for all web-relevant
facets F of the weight polytope ∆r are rational first integrals of the birational model
ν∗r

(
WGM
Gr

)
of Gelfand-MacPherson web on Gr.

3. For a certain subset of indices Ar ⊂ {1, . . . , dim Vr} of cardinality γr, the affine embedding νr

post-composed with the natural projection ⊕υr

i=1
C ei ! ⊕a∈Ar C ea is a linear isomorphism defined

over R (actually, over Z). Consequently the Hr-action on Vr induces an action of the same torus
on Ar ≃ ⊕a∈ArC ea which is a birational model of the action of the Cartan torus of Gr on Gr.

Moreover, one can provide an explicit list of algebraically independent monomials Ms for
s = 1, . . . , yr, which form an algebraic basis of the algebra of Hr-invariant rational functions on

Ar. Setting Yr = Spec
(
C
[
M1, . . . , Myr

]) ≃ Cyr , we obtain an explicit rational map Pr : Ar ! Yr

which constitutes a birational model of the quotient map τr : Gr ! Y r = Gr/Hr.

Finally, one constructs an explicit affine embedding σr : Yr ! Ar which is a (rational) section
of the quotient map Ar ! Yr = Ar/Hr, and such that the composed map Ξr = τr ◦

[
νr

] ◦ σr :
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Yr d Y r is birational. This yields a birational identification Yr ≃ Y r and the construction fits
into the following commutative diagram of rational maps:

(81)

Ar

Pr
��

[νr]
// Gr

τr
��

Yr

σr

88

Ξr
// Y r .

4. Given aW-relevant facet F, let c ∈ Kr be the conic class associated to it. Identifying the basis
{ei }υr

i=1
withLr, the elements in the index set IF appear in ‘associated pairs’, with {i, j} ⊂ IF (with

i , j) being such a pair if and only if the sum of the two corresponding lines is equal to c. For
i ∈ IF , we denote by i′ the unique other element of IF such that {i, i′} is an associated pair. We
then fix a subset JF ⊂ IF such that, setting J′F = { j′} j∈JF , one has IF = JF ⊔ J′F .

Then the image of Gr by the projectivization
[
Π̃F

]
: PVr d PVr,F = P2r−3

F of the linear projec-

tion Π̃F is a smooth hyperquadric QF cut out by an equation of the form qF =
∑

i∈JF
εF,i xixi′ = 0

in the coordinate system on Vr,F dual to the base (ei)i∈IF , with εF,i ∈ { ±1 } for every i ∈ JF . The
torus action on Vr,F induced by that of Hr on Vr is equivalent to the one defined by

λ · ei = λiei if i ∈ JF and λ · ei = λ−1
i′ ei when i < JF

for any λ = (λs)
r−1
s=1
∈ (

C∗
)r−1 and any i ∈ IF . We fix j0 ∈ JF and we set J∗F = JF \ { j0}. It follows

that, as a rational map, the quotient map of P2r−3
F by the action of the torus of rank r − 1 induced

by that of Hr is written

(82) τ̃F : P2r−3
F d Pr−3 ,

[
xi

]
i∈IF

7−!

[
x jx j′/

(
x j0 x j′

0

) ]
j∈J∗F

.

in the coordinates xi, i ∈ IF .

5. From the four points above, it comes that for any web-relevant facet F of ∆r, the explicit
rational map

(83) UF = τ̃F ◦
[
Π̃F

] ◦ [νr] ◦ σr : Yr d Pr−3

makes commutative the following diagram of rational maps

(84)

Ar

Pr

��

[νr]
// Gr

ΠF
//

τr

��

QF

τF

��

⊂ P2r−3
F

Yr

σr

;;

Ξr
//

UF

77
Y r

πF
// Pr−3

in which we have ΠF = [Π̃F]|Gr
and τF = τ̃F |QF . It follows that the UF’s are rational first

integrals of a κr-web of codimension r − 3 on Yr = Cyr , that we will denote by WGM
Yr

, which is the
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birational model ofWGM
Yr

on Yr induced by the birational identification Yr ≃ Y r. One has:

WGM
Yr
=W

(
UF

∣∣∣∣ W-relevant
facet F ⊂ ∆r

)
= Ξ∗r

(
WGM
Y r

)
.

6. Given a web-relevant facet F, possibly up to multiplying certain components of the map τ̃F by
−1, then the image ofQ⋆F by τ̃F in Pr−3 is the complement of the arrangement of r−1 hyperplanes
Hr ⊂ Pr−3 cut out by the equation

u0u1 · · · ur−3
(
u0 + u1 + · · · + ur−3

)
= 0 .

in the homogeneous coordinates u0, . . . , ur−3 corresponding to the explicit expression (82) of the
map τ̃F . Moreover, the face map πF : Y r d Pr−3 is defined on Y∗r and one has πF(Y∗r ) =

Pr−3 \ Hr. Finally, on Yr, there exists an explicit arrangement of hypersurfaces Hr ⊂ Yr on the
complement Y∗r = Yr \ Hr of which Ξr is defined and induces an isomorphism Ξr : Y∗r ≃ Y∗r . It
follows that the rational map UF = πF ◦ Ξr is defined on Y∗r with image UF

(
Y∗r

)
= Pr−3 \ Hr.

The result above has been established through direct computations and case-by-case verifica-

tions. It would nonetheless be of interest to provide a conceptual and genuinely uniform proof

valid for all values of r.

It can be verified that all the objects considered in the above result are defined over R. In

particular, this is true for the rational maps (83) which actually can all be written as rational maps

with non-zero coefficients ±1.

7.2. The virtual (r − 3)-ranks. Having explicit rational first integrals of the web WGM
Yr

at our

disposal, the determination of the virtual ranks of these webs becomes a matter of formal compu-

tation. After carrying out the necessary calculations, we obtain the following result for the virtual

ranks of top-degree abelian relations:

Proposition 7.4. One has

ρ•3
(
WGM

Y6

)
= (10, 10, 1) hence ρ3

(
WGM

Y6

)
= 21

and ρ•4
(
WGM

Y7

)
= (28, 20, 1) hence ρ4

(
WGM

Y7

)
= 49 .

7.3. The (r − 3)-abelian relations. Most of the results concerning the (ranks and abelian rela-

tions of the) first two Gelfand-MacPherson webs WGM
Y r

appear to extend to the last two cases

(i.e., for r = 6 and r = 7). In any case, this holds for abelian relations of maximal degree, as

demonstrated below.

7.3.1. The master differential identity HLOGYr . In the affine coordinates u1, . . . , ur−3 on U0 =

{u0 = 1} ≃ Cr−3, we set Li = ui for i = 1, . . . , r − 3 and Lr−2 =
∑r−3

i=0 ui = 1 +
∑r−3

i=1 ui. Then one

defines a (r − 3)-differential form with logarithmic coefficients on Pr−3 \Hr and with logarithmic

poles along the components ofHr by setting

Ωr =

r−2∑

i=1

(−1)i−1ln
(
Li)

r−2∧

k=1
k,i

dLk

Lk

=

r−2∑

i=1

(−1)i−1 ln
(
Li

)
d ln

(
L1

) ∧ · · · ∧ d ln
(
Li

)∧

∧ · · · ∧ d ln
(
Lr−2

)
.
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Up to a scaling factor, Ωr can also be defined as the antisymmetrization of ln(L1) ∧r−2
k=2

d ln(Lk)

with respect to the Li’s. Then we have the following result:

Proposition 7.5. There exists
(
εF

)
F∈K r

∈ { ±1 }K r , unique up to sign, such that the following
differential relation is satisfied:
(

HLOGYr

)

∑

F∈K r

εF U∗F
(
Ωr

)
= 0 .

Consequently, the κr-tuple
(
εF U∗F(Ωr)

)
F∈K r

can be seen as a (r − 3)-abelian relation for WGM
Yr

,
again denoted by HLOGYr .

Proof. The current proof relies on direct computations performed in Maple.33
�

Remark 7.6. The (r−3)-form Ωr is holomorphic and multivalued. It has a natural global unival-

ued real-analytic version, namelyΩωr =
∑r−2

i=1 (−1)i−1ln |Li| d ln
(
L1

)∧· · ·∧d ln
(
Li

)∧

∧· · ·∧d ln
(
Lr−2

)
.

One can verify that the associated real-analytic identity
(

HLOGω
Y r

)

∑

F∈K r

εF U∗F
(
Ωωr

)
= 0 .

holds true identically on Y+r .

7.3.2. Combinatorial (r − 3)-abelian relations. It is more convenient to formulate the results

of this subsection in terms of the web WGM
Y r

on Y r. Since the representation Vr, into whose

projectivization Gr = Gr/Pr embeds, is minuscule, it admits a natural system of linear coordinates

xℓ, indexed by Lr ≃ Wr, each uniquely determined up to scaling.

It follows from [Sk] that the material described in §?? generalizes to all cases r = 4, . . . , 7. In

particular, for each ℓ ∈ Lr, the image inY r - by the quotient map - of the Hr-invariant hyperplane

section {xℓ = 0} ∩Gr is an irreducible divisorDℓ, along which the residue of the abelian relation

HLOGYr can be taken. We denote this residue by

ARr−3
ℓ = ResDℓ

(
HLOGY r

)
.

We will use the following fact which characterizes the adjacency between the vertices and the

orthoplex facets of ∆r in terms of their respective labelling by the set of lines Lr and the one of

conic classes Kr:

Lemma 7.7. The vertex of ∆r corresponding to ℓ ∈ Lr is adjacent to the Dr−1-facet corresponding
to c ∈ Kr if and only if c ∈ ℓ +Lr, that is there exists ℓ′ ∈ Lr such that c = ℓ + ℓ′.

For any ℓ ∈ Lr, we define Kr(ℓ) =
{
c ∈ K | c − ℓ ∈ Lr

}
. This set can be identified with the

collection of (Dr−1)-facets of the polytope ∆r that are adjacent to ℓ, viewed as a vertex of ∆r. We

denote byWGM
Y r,ℓ

the subweb ofWGM
Yr

corresponding to these facets; that is,

WGM
Y r,ℓ
=W

(
πF

∣∣∣ F ∈ Kr(ℓ)
)
.

Since the vertex figure of ∆r at ℓ is isomorphic to ∆r−1, we obtain a natural bijection Kr(ℓ) ≃
Kr−1. It follows thatWGM

Yr ,ℓ
is a κr−1-web.

With these notations in place, we obtain the following result by direct computation:

33Maple worksheets are available from the author upon request.
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Proposition 7.8. 1. For any ℓ ∈ Lr, the residue ARr−3
ℓ

is a rational (r − 3)-AR. Its non-trivial
components are carried by the πF foliations for all Dr−1-facets F of ∆r adjacent to ℓ. In other
terms, ARr−3

ℓ
is a complete (r − 3)-AR ofWGM

Y r ,ℓ
.

2. Actually, ARr−3
ℓ

spans the space of (r − 3)-ARs ofWGM
Y r ,ℓ

which is (r − 3)-rank 1: one has

ARr−3
(
WGM
Y r ,ℓ

)
=

〈
ARr−3

ℓ

〉
.

3. For F ∈ Kr(ℓ), the πF-component of ARr−3
ℓ

is a linear combination with coefficients in
{−1, 0, 1} of the following r − 2 wedge products for i = 1, . . . , r − 2:

d ln
(
πF,1

) ∧ · · · ∧ d ln
(
πF,i

)∧
∧

· · · ∧ d ln
(
πF,r−2

)
.

4. The ARr−3
ℓ

’s for ℓ ∈ Lr are called ‘combinatorial ARs’. They span a subspace of dimension

ρr−3(WGM
Yr

) − 1 of ARr−3(WGM
Yr

)
which we will denote by ARr−3

C

(
WGM
Y r

)
.

This results shows that some properties of WGM
Y5

admit natural generalizations to the cases

r = 5, 6. It is natural to wonder if it might be the case of some other properties, e.g. the first

one of Corollary 3.10. We believe that it is indeed the case and that for any r ∈ {4, . . . , 7}, the

following holds true:

One has ρr−3(W) ≤ 1 for any κr−1-subweb W of WGM
Y r

. Those for which the
virtual (r−3)-rank is 1 actually are of maximal (r−3)-rank 1. And these subwebs
are exactly the ℓr subwebsWGM

Yr ,ℓ
for all ℓ ∈ Lr.

7.3.3. The structure of ARr−3
(

WGM

Yr

)

. From the results above, we deduce the following

Theorem 7.9. 1. One has

(85) ARr−3
(
WGM

Yr

)
= ARr−3

C

(
WGM

Yr

)
⊕

〈
HLOGYr

〉
.

Moreover, ARr−3
C

(
WGM

Yr

)
is of dimension ρr−3

(
WGM

Yr

) − 1 hence the (r − 3)-rank of WGM
Yr

is

ρr−3
(
WGM

Yr

)
, that is, is AMP.

2. By residues/monodromy, the abelian relation HLOGYr spans the subspace ARr−3
C

(
WGM

Yr

)
of

combinatorial ARs, which coincides with that of rational (r − 3)-ARs ofWGM
Yr

: one has

Res
(
HLOGYr

)
= ARr−3

C

(
WGM

Yr

)
= ARr−3

Rat

(
WGM

Yr

)
.

3. For any smooth del Pezzo surface Xr = dPd with d = 9 − r, using Serganova-Skorobogatov
embedding fSS : dPd ֒! Y r (cf. (24) above), one can recover in a natural way the weight r − 2

hyperlogarithmic abelian relation HLogr−2
dPd

ofWdPd from the (r − 3)-AR HLOGY r .

We believe that the results known to hold for r = 4, 5 generalize straightforwardly to the cases

r = 6, 7. For instance, we are convinced that the following statement remains valid for r = 6, 7,

in the context of the natural linear action of the Weyl group Wr on the space of (r − 3)-abelian

relations of the webWGM
Yr
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The decomposition in direct sum (85) is, in fact, the decomposition of ARr−3
(
WGM

Yr

)

into irreducible Wr-representations. The 1-dimensional subrepresentation spanned
by HLOGYr is (isomorphic to) the signature representation.

By analogy with the cases r = 4, 5, one may also conjecture that ARr−3
C

(
WGM

Yr

)
is irreducible as

a Wr-representation. We will revisit this in a future work.

8. Perspectives and questions

In this final section, we begin by discussing natural generalizations to WGM
Y5

of the many

remarkable properties enjoyed by Bol’s web. In §8.2, we offer some brief remarks on the possible

interpretation of the differential identity HLOGY5
as the manifestation of a yet-to-be-determined

property of a certain scattering diagram that might be associated to Y5.

8.1. Comparison between Bol’s webWGM
Y4

andWGM
Y5

. The main objective of our previous pa-

per [Pi5] was to demonstrate that the webWdP4 , formed by the ten pencils of conics on a smooth

del Pezzo surface of degree four dP4, shares many remarkable properties with Bol’s classical

web B ≃ WdP5
≃ WGM

Y4
. Moreover, in [Pi5, §4.5], we showed that any del Pezzo web WdP4

can be recovered from the Gelfand–MacPherson webWGM
Y5

as its pull-back under an embedding

dP4 ֒! Y5, first considered by Serganova and Skorobogatov in [SS].

One of the main results of the present paper is that, beyond this structural recovery, one can

also retrieve the most significant abelian relation ofWdP4
– namely, its hyperlogarithmic abelian

relation of weight three, HLogdP4
– from the most notable (r − 3)-abelian relation of the former

web WGM
Y5

, namely HLOGY5
. This naturally raises the question (at least for the author) of

whether the many remarkable properties satisfied by Bol’s web might also admit natural analogues

in the context of the Gelfand-MacPherson webWGM
Y5

.

∗ ∗ ∗

Below, we review the list of remarkable properties of Bol’s web as presented in [Pi5, §1.1],

and for each of them, we provide a brief comment regarding its possible generalization to the web

WGM
Y5

.

1. Geometric definition. The del Pezzo webs are defined as the webs on del Pezzo surfaces

whose foliations are the pencils of conics on these surfaces. It is plausible that a similar geometric

interpretation may exist for the Gelfand–MacPherson webWGM
Y5

. Indeed, as established in [SS]

(see the very end of the proof of Theorem 6.1 therein), for any del Pezzo quartic surface dP4,

the associated Serganova-Skorobogatov embedding FSS : dP4 ֒! Y5 induces an isomorphism of

Picard lattices F∗SS : PicZ

(
Y5

) ≃ PicZ

(
dP4

)
. Let c ∈ PicZ

(
dP4

)
be a conic class with associated

facet F ⊂ ∆5 and corresponding face map πF : Y5 d P2. Then, in [Pi5], we proved that the pull-

back of the linear system |OP2(1)| under the composition πF ◦ FSS : dP4 d P2 coincides precisely

with the complete linear system | c |. This observation suggests that the map πF : Y5 d P2 may in

fact be induced by the complete linear system | c | when c is now seen as an element of PicZ
(
Y5

)
.

2. Linearizability. Since it contains Bol’s web as a subweb, any del Pezzo web WdP4
is non-

linearizable. It is currently unclear to what extent the (non-)linearizability of the web WGM
Y5

is
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relevant. We do believe that this web is not linearizable, but we also consider this fact to be

non-essential. The approach discussed in [Pi1] should allow to address this question.

3.& 4. Structure of the space of top degree ARs&maximality of the rank. The spaces of top

degree abelian relations ofB ≃WGM
Y4

andWGM
Y5

share the same structure. Indeed, in both cases,

there exists a subspace of so-called combinatorial ARs (denoted by a capital subscript C), such

that the following direct sum decompositions hold:

AR
(
WGM
Y4

)
= ARC

(
WGM
Y4

)
⊕ 〈

Ab
〉

(86)

AR(2)
(
WGM
Y5

)
= AR

(2)
C

(
WGM
Y5

)
⊕

〈
HLOGY5

〉
.

Moreover, as is well known, Bol’s web has maximal rank 6. As shown above, the genuine 2-rank

of the webWGM
Y5

is equal to its virtual 2-rank. Therefore, both webs have AMP ranks. Regarding

abelian relations and the rank structure of the webs, the similarity betweenWGM
Y r

for r = 4 and

r = 5 is clearly observable.

5. ‘Canonical algebraization’. In [Pi5, §3.5], we explained how Bol’s web can be canonically

recovered from the space of its combinatorial abelian relations. It is an interesting question to ask

whether a similar phenomenon holds for the webWGM
Y5

. We believe that it might be the case.

Let UΩ2 be the subspace of rational 2-forms on Y5 = C5 spanned by the 30 wedge products

d ln Ui,a∧d ln Ui,b for all i ∈ [[10]] and all a, b such that 1 ≤ a < b ≤ 3. This is the space generated

by all the components of all the combinatorial 2-abelian relations. It can be verified that UΩ2 is a

20-dimensional vector subspace of Ω2
C(Y5)

. We wonder whether the following statements hold:

• for any y ∈ Y∗5, the evaluation map at this point, evy : UΩ2
! Ω2

Y5,y
, ω 7! ω(y) is well-

defined and surjective. Consequently, its kernel K(y) = Ker(evy) is a vector subspace of
UΩ2 of dimension 10;

• we thus obtain a map Y∗
5
! G10

(
UΩ2) ≃ G10(C20), y 7−! K(y) which, composed with

the Plücker embedding, gives rise to a morphism

µ : Y∗5 −! P
(
∧10 C20

)
= P(20

10)−1 .

Composed by the birational identification Y5 ≃ Y5 (see (15)), this yields an embedding

µ ◦ Θ−1 : Y5 ֒! P(20
10)−1 such that the closure of the image Y5 = µ(Y∗5) provides a

compactification of Y5 with ‘nice properties’.

A similar construction for the web WGM
Y4

on Y∗4 ≃ M0,5 gives rise to (the restriction to the

open stratum of) the log canonical embeddingM0,5 ֒! P9, that is the embedding induced by the

complete linear system associated to the ample log-canonical divisor KM0,5
+ ∂M0,5 (see [KT]).

It is natural to ask whether an analogous result holds for the webWGM
Y5

on Y∗5.

In [Co], the author studied the Chow quotient S5//H of the spinor tenfold by the action of

the Cartan torus H ⊂ Spin
(
C10). He proved that, up to normalization, this Chow quotient is

smooth with a boundary having simple normal crossings, and described the log canonical model

Y5 of S5//H. It would be interesting to investigate possible relationships between the conjectural

compactification Y5 discussed above and the proper varieties S5//H and Y5 studied by Corey in

his paper.
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6. Weyl group action. Thanks to a result by Skorobogatov, for any r = 4, . . . , 7, the Weyl group

Wr acts by automorphisms on Y r and preserves Gelfand–MacPherson web WGM
Y r

. From this,

we deduce a linear action of Wr on AR(r−3)(WGM
Yr

)
. In both cases, the components

〈
Ab

〉
and〈

HLOGY5

〉
are isomorphic to the signature representation of Wr.

7. Hexagonality and characterization. It has been known since Bol’s paper [Bo] that Bol’s web,

that is WdP5
≃ WGM

Y4
, can be characterized – up to local analytic equivalence – as the unique

planar hexagonal web that is not linearizable. It is natural, though perhaps somewhat naive, to ask

whether a similar characterization holds for the Gelfand–MacPherson webWGM
Y5

.

Let us discuss briefly what could be the analog of Bol’s characterization for this 5-dimensional

10-web. First, the formal similarity between the direct sum decompositions given in (86) suggests

that the appropriate analogue, for WGM
Y5

, of the notion of a hexagonal 3-subweb in planar web

geometry might be the 5-subwebs of WGM
Y5

which carry a non-trivial irreducible and complete

2-abelian relation. These subwebs have been described above in Corollary 3.10. In particular,

it follows that not every 5-subweb of WGM
Y5

carries a complete and irreducible 2-abelian rela-

tion. However, this does not prevent us from envisioning a Bol-type characterization of this web

based on its 5-subwebs. We now outline a few more specific remarks on what would need to be

established in order to derive such a characterization:

• Given a 10-web W of codimension 2 on a 5-dimensional manifold M, one defines a
function RW on the set of its 5-subwebs by associating its 2-rank to any such subweb.
The natural question is then whether the function RWGM

Y5

characterizesWGM
Y5

up to local

analytic equivalence.

• Before attempting to investigate this question, it may be necessary to first study more thor-
oughly the analytic classification of 5-webs of codimension 2 on 5-dimensional manifolds.
In particular, one may ask:

– Is there a universal bound on the 2-rank of such a web? Could it be equal to 1?
– What can be said about the webs that achieve this maximal 2-rank?
– Can such webs be classified? Is there a unique normal form for them?
– Does the class of webs attaining the maximal 2-rank share, in some meaningful

sense, some ‘nice properties’ with the class of hexagonal planar 3-webs?

8. Description à la Gelfand-MacPherson. That Bol’s web B ≃ WdP5
can be described as a

Gelfand-MacPherson web is a result established in [GM]. This contrasts withWGM
Y5

, which is of

this type by definition.

While the fact thatWGM
Y5

is of Gelfand–MacPherson type is immediate from its very definition,

extending this perspective to its master 2-abelian relation HLOGY5
is a much more subtle and

interesting question, which deserves some further discussion. In their foundational work [GM],

Gelfand and MacPherson not only provide a geometric construction of Bol’s web (namely as the

webWGM
Y4

), but also demonstrate how, within the same geometric framework, one can construct

the dilogarithm function and derive its 5-term functional identity. Remarkably, this identity arises

in their theory as a rather direct consequence of Stokes’ theorem, applied to the integration along

the fibers of the action of the Cartan torus of SL(R5) on the Grassmannian Gor
2

(R5) of oriented

2-planes in R5. The integrand is an invariant differential 4-form representing the first Pontrjagin

class of the tautological bundle on Gor
2

(R5).
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It appears natural to us to seek a similar geometric construction for the master 2-abelian rela-

tion. A question in this direction was already raised in [Pi5, §5.9], but for the weight 3 hyper-

logarithmic abelian relation HLogdP4
associated with a smooth del Pezzo quartic surface dP4. In

light of the results of the present paper – particularly the fact that any identity HLogdP4
can be

obtained from HLOGY5
– we now believe that the following question should be preferred over

Question 5.7 in [Pi5]:

Question.– Can the differential identity HLOGY5
be obtained à la Gelfand-MacPherson by

means of an invariant differential form Ω(P) on a real form S 5 of the spinor tenfold S5, rep-
resenting a certain characteristic class P ∈ H6(S 5,R)?

This is one of the questions suggested by our work that we find the most appealing and we plan

to work on it in the near future.

9. Modularity. The web WGM
Y4

can also be interpreted as the web defined on M0,5 by the five

forgetful maps ϕi :M0,5 !M0,4 ≃ P1 \ {0, 1,∞}.
Since it is defined on a moduli space via morphisms with a modular interpretation, it is reason-

able to describeWGM
Y4

as a ‘modular web’. In [Pi5, §4.6], we proved that that any del Pezzo web

WdP4 can also be qualified as ‘modular web’. This naturally leads to the following question:

Question. Does Gelfand-MacPherson’s webWGM
Y5

admit an interpretation as a modular web?
For instance, is it naturally defined on a subvariety of some moduli space of projective configura-
tions?

At this stage, we do not have any clear insight into a possible answer to this question.

10. Cluster nature. An interesting feature of the web WdP5
= WGM

Y4
is that it is a ‘cluster

web’. In [Pi5, §4.7], we showed that this property also holds for any del Pezzo webWdP4
. This

raised the question whether this holds forWGM
Y4

as well. This is precisely what we established in

§4 above, provided one admits cluster-like structures that are more general than classical cluster

structures.

8.2. An interpretation of HLOGY4
in terms of a scattering diagram? The author has long

been fascinated by the functional equations of polylogarithms, among which Abel’s five-term

identity
(
Ab

)
for the dilogarithm stands out as particularly central and archetypal. In his view,

there are two especially meaningful explanations for why
(
Ab

)
holds: on the one hand, the

cohomological-analytic and geometric approach developed by Gelfand and MacPherson discussed

just above; on the other, the interpretation of this functional identity as a consequence of the con-

sistency of the scattering diagram associated with the X-cluster variety of type A2.

Although Gelfand–MacPherson’s perspective appears to us as the most elegant – indeed, it

is, in the author’s opinion, one of the most beautiful mathematical constructions he has ever en-

countered – the scattering diagram approach seems to offer a significantly broader scope. One

particularly appealing consequence of the latter theory34 is that any closed loop intersecting trans-

versely a (possibly countable) collection of walls in a consistent scattering diagram gives rise to

a dilogarithmic identity – which becomes a formal identity involving infinitely many terms if the

loop meets infinitely many walls.

34In the case of scattering diagrams arising from cluster algebras, this phenomenon has been thoroughly investi-

gated by T. Nakanishi. For further details, the reader is referred to Nakanishi’s book and article [Na1] and [Na2].
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The fact that the spinor tenfold S5, and more generally all the spacesGr for r = 4, . . . , 735, carry

a cluster-like structure of finite type invites us to dream of an interpretation of all the identities

HLOGYr in terms of certain properties of scattering diagrams associated with the spaces Y r.

In [Du], Ducat constructed a finite type LPA structure on S5 and described an associated scat-

tering diagram. It is natural to ask whether these objects admit versions defined on the torus

quotient Y5. Addressing this question would require a theory of coefficients and their mutations

for LPA algebras, which, to our knowledge, has not yet been developed.
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