A STORY OF WEBS:
THE WEBS BY CONICS ON DEL PEZZ0O QUARTIC SURFACES
AND GELFAND-MACPHERSON’S WEB OF THE SPINOR TENFOLD

LUC PIRIOf

AsTrACT. In aprevious paper, we studied the web by conics “‘Wgp, on a del Pezzo quartic surface
dP, and proved that it enjoys suitable versions of most of the remarkable properties satisfied by
Bol’s web B. In particular, Bol’s web can be seen as the toric quotient of the Gelfand-MacPherson
web naturally defined on the A4-grassmannian variety G,»(C?) and we have shown that Wap, can
be obtained in a similar way from the web ‘VVyGé" which is the quotient by the Cartan torus of
Spin,((C), of the Gelfand-MacPherson 10-web naturally defined on the tenfold spinor variety Ss,
a peculiar projective homogenous variety of type Ds. In the present paper, by means of direct and
explicit computations, we show that many of the remarkable similarities between 8B and Wp,
actually can be extended to, or from an opposite perspective, can be seen as coming from some
similarities between Bol’s web and ’M/gé” . The latter web can be seen as a natural uniquely defined
rank 5 generalization of Bol’s web. In particular, it carries a peculiar 2-abelian relation, denoted by
HLOGy;,, which appears as a natural generalization of Abel’s five terms relation of the dilogarithm
and from which one can recover the weight 3 hyperlogarithmic functional identity of any quartic
del Pezzo surface.
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2 L. PIRIO

This paper may be viewed as a continuation of [CP|] and [PiS], to which the reader is referred
for a more detailed exposition of the background and motivations underlying the questions ad-
dressed here. Nevertheless, the Introduction below should suffice to provide most readers with a
general overview of the main themes investigated in this work.

Here are a few words about the setting(s) and some general notations we will work with: except
in some cases which will be explicitly indicated and for which the setting is real algebraic or real
analytic, we work over the field C of complex numbers, in an algebraic or analytic framework. We
denote indifferently ‘In’ or ‘Log’ the usual complex logarithm (defined as the primitive vanishing
at 1 of the logarithmic differential du/u on the punctured complex plane C*). Given any positive
integer n, we set [[n]] for the set of positive integers less than or equal to n: one has [[n]] =
{1,2,...,n}. We will denote by x,y the affine coordinates associated to the affine embedding
C? P (x,y)—[x:y:1].

1. Introduction

‘Cauchy’s identity’ of the logarithm

©) Log(x) - Log(y) - Log(g) =0
admits a ‘weight 2~ generalization, the so-called ‘Abel’s identity’
1- 1-
(Ab) RG) - Ro) R (%)= R[22} + g (X=X g,
y 1-x y(1 —x)

satisfied for any x,y € Rsuch that 0 < x <y < 1, by lRogers’ dilogarithm| R, which is the function
defined by R(x) = Liy(x) + Log(x)Log(1 — x)/2 — 726 for x €]0, I[EI

In [HM]] (see also the last paragraph of [Gr, §4.1]), it is written (p. 393) that it has been widely
believed that the logarithm and the dilogarithm, together with the two functional identities above
that they satisfy, are the first two elements of an infinite sequence of higher logarithms which
share analogous properties: in particular each satisfies a peculiar functional identity, which even
may be fundamental in a certain sense. In the as yet unpublished preprint [GRI], the authors wrote
that ‘writing explicitly functional equations for the classical n-th polylogarithm might not be the
“right" problem’, because ‘it seems that when n is growing, the functional equations become so
complicated that one can not write them down on a piece of paper’.

In [[CP], it has been shown that to work with hyperlogarithms instead of just polylogarithms, a
simple and natural geometric construction allows to get a uniform series of functional identities,
up to weight 6, which are very concise and whose first two elements precisely are the classical
identities (C) and (Ab) of the logarithm and the dilogarithm. Given a del Pezzo surface dP, of de-
gree d € {1,...,6} with canonical class K, its set of conic classes K = { ¢ € Picz(dP,)|(-K,¢) =
2and ¢¢ =0 } is known to be finite and for each ¢ in it, if ¢, : dP; — | ¢|~ P! stands for the asso-
ciated fibration in conics, then the set £, ¢ P! of its singular values has exactly 8 —d elements. To
Y., one can associate the ‘complete weight w = 7 —d antisymmetric hyperlogarithm AH}’, which
is a multivalued function on P!, ramified at the points of X, and which is canonically defined up
to sign. The main result of [CP] is the following:

'Here Li, stands for the classical bilogarithm: one has Li>(x) = Y *%] % = - fox Wdu for any x such that |x|< 1.
Soustracting 7%/6 in the given definition of Rogers dilogarithm is in order that the RHS of Abel’s identity be zero.


https://mathworld.wolfram.com/RogersL-Function.html
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Theorem. Given a point x € dP, not lying on a line and given a determination of the hyperloga-
rithms AHY at ¢(x) for any ¢ € K, there exists a K-tuple (&)ex € { = 1}7(, unique up to a global
signE such that the following identity is satisfied in the (complex analytic) vicinity of x:

(Hlog}, ) D& AHY(9e) = 0.
K

For d = 6 and d = 5, the ramification sets X, have cardinalities 2 and 3, respectively, and can
therefore be assumed to coincide with {0, oo} and {0, 1, oo}, respectively. With this normalization,
AH! and AH? are just the usual logarithm and Rogers dilogarithm R respectively. The del Pezzo
surfaces dP¢ and dPs5 are unique (there is no modulus), the corresponding hyperlogarithmic func-
tional identities as well and it is easy to check that they respectively coincide with Cauchy’s and
Abel’s identity: one has

(Hlog), ) = (C) and (Hlog}, ) =~ (Ab)
(where the symbol =~ here means a coincidence between two identities up to a (possibly local)

change of coordinates).

Motivated by the question of whether the ‘del Pezzo identities Hlogfivpd’ forw = 1,...,6,
genuinely can be considered as the most natural higher weights generalizations of Abel’s relation
or not, we carried out a thorough comparison of HlogﬁPS and Hlogzu,4 in [Pi5]]. We did that by
taking a web geometer perspective. For X = dP; with d = 4, 5, let W be the corresponding Weyl
group acting on Pic(X) and let us denote by ‘W yp, the web formed by the pencils of conics on X.

The main outcome of [PiS[] is that virtually all the remarkable properties of various kinds
satisfied by the pair (‘Wgp,, HlogﬁPS ~ Ab) admit natural analogues for (‘Wgp,, Hloggm), which
also hold true. Below is a list of some of the remarkable properties shared by both webs Wp,
and Wp, (see §1.1 and §1.2 of [Pi5] for further details):

e gcometric definition as the webs formed by the pencils of conics on a del Pezzo surface;

o all their abelian relations are hyperlogarithmic; the Weyl group W acts on this space and
when viewed as an abelian relation, the identity (HlogéVPd) transforms according to the sig-
nature under the action of W and spans all the subspaces of antisymetric hyperlogarithmic
ARS by residues/monodromy; dues and monodromys;

e maximality of the rank together with non linearizability (they are exceptional webs);
e combinatorial characterization by means of the hexagonal subwebs;

e modularity (ie. definition by means of a web naturally defined on a moduli space of con-
figurations of points in a projective space);

e cluster character (ie. definition by means of some cluster variables of a cluster algebra);

e geometric construction a la Gelfand-MacPherson.

The fact that the two pairs (Wqp,, Ab) and (Wp,, Hloggm) share so many similarities is quite
striking, and may suggest that ‘the hyperlogarithmic identity Hlog?jP4 is, in some sense, the most
natural weight-3 generalization of Abel’s identity Ab ~ HlogﬁPS .

2Actually, one can chose the determinations of the AH;”’s in such a way that one has ¢, = 1 for every ¢ € K, see
[CP] (in particular formula (9) in Theorem 3.1 therein).
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However, such a strong claim should be approached with caution. First—and quite evidently—the
rigorous meaning of ‘most natural generalization’ is far from being clear or universally accepted.
Second, what makes Abel’s identity for the dilogarithm particularly compelling is its relevance
across many seemingly unrelated areas of mathematics. By contrast, to date, we are not aware of
significant applications of Hloggll>4 beyond the theory of functional identities itself and the realm

of web geometry.
*

But there are more substantial considerations that temper the naive assumption of viewing
Hlog?jP4 as ‘the’ most natural weight-3 analogue of Abel’s identity:

— the (smooth) del Pezzo quintic surface has no moduli hence the dilogarithmic identity
HloggPS is genuinely unique. This is not the case for del Pezzo surfaces of degree d = 4
since the moduli space of these surfaces is of dimension 2. Hence there is a 2-dimensional
family of functional identities Hlog3P4, and no unique/well-defined weight 3 hyperloga-
rithmic identity. The same phenomenon occurs for the hyperlogarithmic identities of
higher weights: for eachd = 1,2,...,5, the Hlogzl;tf’s form an irreducible complex ana-
lytic family of dimension 2(5 — d) of functional relations and in each family, no identity
appears as being more canonical or particular than the others;

— if HlogﬁPS and Hlog?jP4 share an important number of nice features, there is a formal
difference between these identities which may make the latter identity appear as less fun-
damental than the former. Indeed, if Abel’s identity Ab =~ Hlog(zjPS involves only one

function, namely Rogers dilogarithm R, this is not the case for Hloggu,4 since for a generic

quartic surface dP;, the ten weight 3 hyperlogarithms AH; for ¢ € % do not coincide,
even up to sign and to precomposition by a projective automorphismﬁ

— the Weyl group Wyp, of a del Pezzo surface dP; acts on the space of ARs of ‘Wgp, but
there is a major difference between the case d = 5 and d € {1, ...,4}. The natural group
embedding Aut(dP;) < Wgp, is an isomorphism only for d = 5 hence the Weyl group
action on AR(‘Wgp,) is not geometric (that is is not induced by automorphisms of the
considered del Pezzo surface) for any d € {1,...,4};

— if the identities Hl()gg1P4 were truly the ‘right’ weight 3 generalizations of Abel’s identity,
it would be natural to expect the same for the identities Hloggpd’s in higher weights w =
8 — d. It turns out that it does not seem to be the case since some of the most striking
remarkable properties shared by the webs ‘Wgp, and ‘Wp, are no longer satisfied by the
webs Wyp, for d < 3. For instance, by a direct computation, we have verified that the
curvatureﬁ] of a 27-web ‘Wp, is non zero, which implies that this web is not of maximal
rank, contrarily to the webs Wgp, for d = 4, 5.

3As it follows easily from the explicit form for Hlog?ﬂ,4 given in [CP, §4], the quotient {AH" |¢ € K }/~ is of
cardinal 5 if ~ stands for the following equivalence relation: given two (germs of) functions F, G, one has F ~ G if
and only if +F = G o y for some projective automorphism y € Aut(P') = PGL,(C).

4By definition, this is the sum of the Blaschke-Dubourdieu’s curvatures of all of the 3-subwebs of “Wp, (see [CL]).
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The above considerations naturally led us to seek a generalization of the relation Ab = HlogﬁPS
that satisfies the following desirable properties: )

e [t is defined on a space equipped with a natural action of the Weyl group of type Ds, and
this action operates via automorphisms. Moreover; the looked for generalization behaves
coherently and compatibly with respect to this group action.

o [t consists of a single, well-defined identity, without any module entering into the picture.

o This identity involves a unique element whose sum of pullbacks under a specific family of
maps vanishes identically.

o Moreover, every hyperlogarithmic functional identity Hlog?1134 can be recovered from this
single identity, and in a natural, canonical way.

In this paper, we provide a fully explicit formulation of such an identity and investigate several
of its noteworthy properties. In particular, we show that it is unique (up to multiplication by a
nonzero scalar) and that it satisfies all four of the criteria listed above.

An additional remarkable feature of “Wp, is that it is a ‘cluster web’. We further demonstrate
that a certain lift of the generalization of ‘W gp, discussed here also possesses a cluster structur—
albeit with respect to a generalized notion of cluster variety.

In the following sections, we present our main results in greater detail.
*

In their interesting paper [[GM]], Gelfand and MacPherson describe a geometric setting which
allows them to give a cohomological-analytic construction of Abel’s identity. On the purely geo-
metric side, they show that the del Pezzo quintic surface dPs =~ mo,5 together with the five
fibrations in conics, which correspond to the five forgetful morphisms M),s — M)A ~ P! are
equivariant quotients, under the action of the Cartan torus Hy, of GL5(C), of the grassmannian
G»(C?) and of the five natural rational maps GH(C?) - Gz(C5 /{ei)) ~ G»(C*), induced for each
i € {1,...,5} by the linear projection C° — C>/{e;) onto the quotient of C> by the line spanned
by the i-th element of the canonical basis (ek)]f:1 of C°.

In view of generalizing Gelfand and MacPherson approach to the webs Wgp, for any d €

{1,2,. s 4}, we remarked in [Pi5] that there is an intrinsic way to recover Go(C?) from X4 =
dPs ~ My s: the former variety is the (projective) Cox variety of the latter.

Let dP; be a fixed smooth del Pezzo surface of degree d € {2,...,5}. We will also denote it
by X, to emphasize that it can be obtained as the blow-up of P? at r = 9 — d points in general
position. We denote by L the set of lines contained in X, and by E, the Dynkin type of the
considered del Pezzo surface. The associated Weyl group acting transitively by permutations on
L will be denoted by W,.

Then we have the following (see [Pi5, §4.5.2] for more details and references):

e there is a projective Cox variety P(X,) which is acted upon by a rank r torus Tns =
Tns/C* =~ (C*)" which is the quotient of the Neron-Severi torus Txs = Homgz(Pic(X,), C*)
by a one-parameter subgroup associated to the (anti)canonical class of X,;
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o the Cox ring of X, is generated by the lines contained in it Consequently, the projective
Cox variety P(X,) embeds into the projective space P(C%);

o from some results by several authors (Popov, Batyrev-Popov, Derenthal, Serganova-Skoro-
bogatov) it follows that C£ naturally is a minuscule representation of a simple complex
Lie group G, of type E,. The weights of this representation identify with the lines in-
cluded in X, and the Weyl group W, acts transitively on their set;

e viewed as contained in P(CZ), the Cox variety P(X,) actually is a subvariety of the as-
sociated minuscule homogeneous space G, = G,/P, c P(CL), where P, is a suitable
maximal parabolic subgroup of P,;

e moreover, up to a natural isomorphism 7ns =~ H, between the torus acting on P(X,)
and the Cartan torus H, of G,, the map P(X,) < G, c P(C%) turns out to be a torus-
equivariant embedding;

e as shown by Skorobogatov in [SK], there exists a Zariski open subset gif C G, whose
complement has codimension at least 2, on which the action of H, is sufficiently well-
behaved to define a geometric quotient Y, = gif /H,. This quotient is a quasi-projective
variety. Moreover:

— the linear action of the Weyl group W, on C£ gives rise to an isomorphism W, =~
Aut(Y,) (see [SK, Theorem 2.2]);

— there is a natural embedding Fsgs : X, <— Y, inducing an isomorphism of the Picard
lattices F : Picz(Y,) = Picz(X,) and making commutative the following diagram:

(1) P(X,)¢ G,C P(CY)
X, Fss v,

The interest of the material above is that it allows to construct the web “‘Wgp,, for an arbitrary
del Pezzo surface, from a unique web on Y, obtained as the quotient of a H,-equivariant web
naturally defined on G, and induced by linear projection on C£. Indeed, denoting by by the Lie
algebra of the real part of H, and by H,; ~ (R.()" the ‘positive part’ of the latter, we have the
following :

e there is a (real analytic) moment map u : G, — by whose image is the associated ‘mi-
nuscule weight polytope’ A, = Ag, p,, that is the convex envelope of the weights of the
minuscule representation C£;

e for £ generic, that is in a certain dense Zariski open subset G, the moment map induces an
isomorphism between the positive orbit H; - £ and the interior A, of the weight polytope,

which extends to an isomorphism of real analytic manifolds with corners u : HY - ¢ ~ A,;

o for each facet (that is a face of codimension 1) F of A,, let L be the set of lines belonging
to F (in other terms L is the set of vertices of F) and let [Ty : C£ — C£F be the linear
projection associated to the inclusion Ly c £ (i.e. Ker(Ily) = CL\Lr);

SMore rigorously, the Cox ring of X, is generated by any set {07/}, Where for any line ¢ C X,, o is a non zero
element of H°(X,, Ox,(¢)) ~ C.
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o there exists a quotient G of the subgroup of G letting invariant the decomposition in
direct sum C£ = C£r @ CL\£r and a homogeneous projective space Gy = Gr/Pr C
P(CLF) (for a certain parabolic subgroup Py constructed from P) such that (i). one has
Gr =G, N P(CL); and (@i). the restriction to G, of the (projectivization of the) linear
projection Iy gives rise to a dominant rational map G, --» G, again denoted by I1r;

e let Hy be the Cartan torus of Gg. There is a natural epimorphism of tori H — H g with
respect to which [1y : G, --» Gp is equivariant. It follows that there exists a dominant
rational map 7y from Y, onto the quotient Y = gj;f /H ¢ such that the following diagram

commutes:
@) G- -~ +Gr cP(C%)
Y - - >Yr;

e for any conic class ¢ € K on X,, there exists a uniquely determined facet F of A, such
that gluing the two diagrams and (2) gives the following commutative one

Ip,

PX,)— G, - - -+ G,

.

s T
X —" s Y, T Y

which is such that the composition of the rational maps of the bottom line coincides with
the conic fibration ¢, associated to ¢: as rational maps on X, one has ¢, = 7p, o fss.

At this point, one can define the ‘Gelfand-MacPherson’s webs WGM and ’WGM which are
respectively the (generalized) web on G, and V,, induced by the ratlonal maps Hp "and np, for ¢
ranging in the set K of all conic classes of X,: one has

WM = W(Ig|ceK) and WM =W(xp,

From the last two statements in the list above, we deduce that WSM can be seen as the quotient
of the web WG M which is H,-equivariant, and also that del Pezzo’s web “Wap, is the pull-back
of the web ’WgM under Skorobogatov-Serganova’s embedding Fgs : dP; = X, — Y, one has

ce?().

(3) Wap, = Fog(W5") B

In this paper, we focus on the webs by conics of del Pezzo quartic surfaces and their relations to
the Gelfand-MacPherson web WGM More precisely, since the ‘Wyp,’s can all be obtained from

Gelfand-MacPherson web ’WSM , 1t is not unreasonable to ask whether this latter web cannot be
seen as a more natural generalization of Wyp, ~ ’Wgﬁ” than the Wyp,’s

*

OThis is proved by direct computations for d € {2,...,4} (Maple worksheets of these computations are available
under request). For more details in the case when d = 4 (which is equivalent to r = 5), see [PiS| Prop. 4.16].
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The web ’ng’l is defined on the variety Y5, which is rational and of dimension 5, by means

of 10 rational first integrals ¥¢ : Y5 --> P2 withi = 1,...,5 and € = + (here we use notations
similar to those of [PiS]). The main theme of the present paper is the study of the k-abelian
relations of ‘Wgﬁ’l for k = 0,1,2 and how these are related to the abelian relations of a given

“Wip,. Recall that a k-abelian relation (ab. k-AR) for ’WG?/I , is a 10-tuple of k-forms (7f), . such
that 3, . ()" (n5) = 0 (possibly just locally) on Y. They form a vector space which we denote
by ARk(ngl ), and whose dimension rkk(ngl ) is the ‘k-rank’ of ’Wgﬁ’l . Although ngl isa
‘web’ only in a generalized sense, a similar approach to the one described in [Pi2} §1.3.4] can be
applied to it and one can define the ‘virtual k-rank’ p*(‘W) of any subweb ‘W of (VVG?’I , this for

k € {0, 1,2}. An interesting fact is that all the virtual ranks of ‘Wg?’l are finite (see Proposition

further) and in this paper we will describe the spaces of k-ARs of the web ’Wg?’l fork=0,1,2,
see from §3.2 to §3.4 (the two tables in §3.5]provide a concise summary of the results obtained in
these three subsections).

The most interesting case is that of 2-ARs of ‘Wgﬁ’l and how they give rise to 1-ARs for any del
Pezzo web Wyp,. In order to state our main result about the 2-ARs, introducing some terminology
will be useful. For ¢ standing for one of the first integrals ¢ of ngl , we denote by

o C(y) the subalgebra of C(Y5) formed by compositions f o ¢ with f € C(P?);
e LogC(y) the family of multivalued functions on Y5 of the form Log(¢) with ¢ € C(¥);

o dLogC(y) the space of y-logarithmic differential 1-forms, that is of rational 1-forms on
Y5 of the form dLog(¢) = dp/¢ with ¢ € C(y).

The following theorem gathers some of the most interesting results obtained in this paper:
Theorem 1.1. 1. One has pz(‘ng’I ) = 11 and p*(‘W) < 1 for every 5-subweb ‘W of (ngw )

2. Among all the 5-subwebs of ngl exactly 16 have virtual 2-rank equal to 1. These are
the subwebs W< = W( wi‘ Y s aﬁ? ) for the sixteen 5-tuples € = (e,-)?: | € {£1} such that
ple) = #l{ilg = 1}is oddﬂ Each such subweb “WE actually has maximal rank 1, with
AR*(‘WE) spanned by a 2-AR LogARE which is complete, irreducible and logarithmic,
in the sense that the y'-th component of LogARE belongs to dLogC(y;') A dLogC(y})
foreveryi=1,...,5.

3. The LogARSE’s for all odd 5-tuples €’s span a vector space denoted by AR%(‘W;}?’I ) and
called the space of ‘combinatorial ARs’ of ‘ngl . Moreover, one has

kg (W) = dim ARG(WGM) = p2(WgM) -1 =10.

4. There exists a 2-AR of ngl denoted by HLOGy,, which is complete, irreducible and

whose components are ‘dilogarithmic’ in the sense that for any first integral Y5 of ’Wgﬁ’l ,
the Y -th component of HLOGy, belongs to LogC(§) dLogC(y5) A dLogCys).
Moreover, HLOGy is unique up to multiplication by a non-zero scalar and one has

@ AR W) = AR (W) @ (HLOGy, ).

TThis has to be compared with the description of Bol’s subwebs of ‘W;p, given in [PiS, §4.3].
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which implies rkz(ngl ) = pz(’ngl ) = 11: the web ’Wgﬁ” has maximal 2-rank§

5. One can associate a divisor D,, of Y5 to each weight w of the minuscule half-spin rep-
resentation SI. Then the 2-ARs of ’Wg?’l are regular on the complement in Ys of the
union of all the D,,’s which coincides with Y ;< Moreover, the sixteen ARs LogARE’s are
exactly the logarithmic ARs obtained by considering the residues of HLOGy, along the
D,,’s: for any odd 5-tuple €, there exists a uniquely defined weight w(e) such that, up to
multiplication by a non-zero constant, one has

Resp, , (HLOGy;, ) = LogARE.

6. The action of the Weyl group Wp, by automorphisms on Y's (cf. [Sk, Theorem 2.2]) gives
rise to a linear Wp,-action on ARZ(‘ng’I ) which lets invariant the decomposition in
direct sum @). This decomposition actually is the one into Wp,-irreducibles: the irrep
associated to the 1-dimensional component {(HLOGy; ) is the signature representation

whereas AR%(’Wg?’I ) is the Wp,-irreducible module V[lloL1 “]E

7. For any del Pezzo surface dPy, using Serganova-Skorobogatov embedding fss : dPy —

Ys (cf. @4) above), the weight 3 hyperlogarithmic abelian relation HL0g3dP4 of Wap,

(resp. the sixteen elements of HLogARgSym equivalent to HLog? ~ Ab) can be obtained

in a natural way from HLOGy; (resp. from the sixteen logarithmic 2-abelian relations
LogAR< € AR%(Wg?’I )) by means of residues.

An interesting feature of Wp, is that it is a cluster web. More precisely, it admits a birational
model which admits as first integrals the X-cluster variables of type A,. In [Pi5], we established
that each del Pezzo web ‘Wyp, can also be defined by X-cluster variables (of type Dy). It is natural
to wonder whether Gelfand-MacPherson’s web ‘Wg?’l is cluster as well. Unfortunately we do not

have a complete answer for this web yet, but we have one for its lift (VVSGS M In [Du], Ducat gave
the construction of a generalized cluster structure on S5 which is not a classical cluster one, but
enjoys the nice property of being of finite type. We prove the following result:

Proposition 1.2. Gelfand-MacPherson’s web (VVSGS M is cluster with respect to Ducat’s generalized
cluster structure on Ss.

The similarities between the statements above to the corresponding ones for Bol’s web 8 ~
“Wiaps in [PiS, §1.1] are even more striking than those in [PiS, §1.2] about ‘Wyp,. For this rea-
son, and also because the theorem above can be generalized to all the Gelfand-MacPherson webs
Wgﬁ” forr =4,...,8 (see {7 further), we believe that these latter webs are those which must re-

ally be considered as the most direct/fundamental generalizations of 8 ~ Wp, ~ ’Wgﬁ” , and not
really the del Pezzo’s webs “Wyp, . which actually are 2-dimensional slices of the corresponding
Gelfand-MacPherson webs. All these considerations make it natural to ask the following

81t would be more rigorous to state this as ‘the 2-rank of "WSSM is AMP’, using the terminology introduced in [Pi2}
§1.3.5].

9Seeing it as a decomposition in Wp,-irreducibles, (), must be compared with some results given in §3} in some
sense which could be made precise (cf. Proposition 5.2), AR%(WS;” ) corresponds to HLogARgSym and HLOG? to
HLog’.



10 L. PIRIO

Question 1.3. Can the 2-abelian relation HLOGy, of (ngw be obtained following the geometric
approach of Gelfand-MacPherson, that is by integrating an invariant differential form Qp on a
real form Ss of the spinor tenfold Ss which represents a certain characteristic class P € H*(Ss, R)
along the orbits of the action on Ss of the Cartan torus of a split real form of the group Spin(C'?)?

This question is the subject of ongoing research by the author at the time of writing.

The rest of the article is organised as follows: Section 2 consists in some preliminaries. After
recalling some elements of web geometry in we succinctly review the notion of Gelfand-
Mapherson web in §2.21 Then we discuss the geometry around the spinor tenfold in §2.31 The
third section is devoted to the study of ‘Wg?’l especially from the point of view of its ranks and
abelian relations. First, in §3.1] working with some adapted rational coordinates previously in-
troduced, we give a list of explicit rational first integrals U; (see (3I))) for a birational model of
WGM denoted by WGM After having computed the virtual and ordinary ranks of ‘W' GM , wWe
start to study the abehan relatlons of this web in the following subsections. The most 1mportant of
the ARs is the 2-AR with logarithmic coefficient HLOGy, which corresponds to the differential
identity denoted the same which is given in Proposition 3.4l Then the space of abelian relations
ARk(‘WgSM ) for k = 2, 1,0 are successively studied in the subsections §3.3]and §3.4] re-
spectively. In particular, we describe the structures of these spaces relatively to the action of the
Weyl group Wp, and indicate how these spaces (or rather some subspaces of them) are related
with respect to the total derivatives or to taking residues of ARs. Many of the results concerning
the ARs of W (;SM are brought together succinctly in the tables page

In Section 4, we investigate the cluster nature of Gelfand—MacPherson’s web ’WgSM on the
spinor tenfold Ss. We show that, in suitable coordinates, the components of the face maps defining
this web are, up to minor modifications, given by the cluster variables of the finite-type LPA
structure on S5, constructed by Ducat in [Dul].

Section 5 is devoted to the study of a particular 5-subweb WJr of the Gelfand—MacPherson web
W?M , defined by first integrals with simple monomial components We investigate its k-abelian
relations for k = 0,1,2. In particular, we show that W carries a distinguished logarithmic 1-

abelian relation AR}S, from which Abel’s classical five- term identity for the dilogarithm can be
recovered in a direct and natural way.

One of the main results of this paper, established in Section 6, is that for any smooth del Pezzo
quartic surface dPy, the hyperlogarithmic weight-3 identity HLoggp, can be deduced from the
2-abelian relation HLOGy, of ’ngsw . This is first shown at the symbolic level in §6.1] and then
concretely by manipulating explicit abelian relations in §6.21

Section 7 explains how most of the explicit and computational methods developed throughout
this paper for the Gelfand—MacPherson web ‘W %’I can be extended to the entire family of webs
W?/r” for r = 4,5,6,7. We first describe how to make these webs explicit in the cases r = 6,7
(see §7.1)), and then show that the main results regarding the top-degree abelian relations of ‘W' %’I
extend naturally to the webs WGM for r = 6,7 (see Theorem [7.9). In particular, we prove that
each web WGM carries an essentlally unique ‘master’ (r—3)-abelian relation HLOGy,, from

which all other (r — 3)-abelian relations of the web under consideration can be recovered via
residue or monodromy.
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The final section, Section 8, outlines several perspectives and open questions inspired by our
results. In §8.1) we reflect on the many striking properties shared by the webs ‘Wgp, = ’W%’I

and ‘ng” . We conclude in §8.2] with a speculative discussion on a possible interpretation of
the differential identity HLOGy, as the manifestation of an as-yet-undetermined property of a
scattering diagram conjecturally associated with Y.

2. Preliminaries: elements of web geometry and birational geometry around Ss

We start be recalling/introducing general notions of web geometry in a generalized setup
(namely, for ‘generalized webs’). Then we quickly review the notion of ‘Gelfand-MacPherson
web’ introduced in [PiS[] in before discussing in several properties of the most impor-
tant space considered in this paper, namely the spinor tenfold Ss.

2.1. Elements of web geometry. We introduce here basic notions of web geometry. The webs
we are considering here are quite general, and in particular more general than the webs encoun-
tered in the classical literature on the subject. For a more detailed overview of web geometry as
we need it here, see [Pi2, §1].

Let M be an irreducible analytic (hence possibly singular) variety. In this text, a ‘d-web’ on M
(for a positive integer d) is a finite collection ‘W = (¥7,...,F4) of d pairwise distinct foliations
on M, all of the same codimension We will also assume that for m € M generic, then the
tangent spaces of the foliations of ‘W at m span the whole tangent space of M at this point, ie.
TwM = (T,%;|i € [[d]l ), and that for i, j distinct, T,,7; and 7,7 intersect transversally in 7}, M.
When these two conditions are fulfilled, m is said to be a ‘smooth or a regular point’ of W.

Another d-web W’ = (F/),4 defined on another manifold M’ is ‘equivalent’ to ‘W if there
existm € M and m’ € M’, regular points for ‘W and ‘W’ respectively, as well as a local biholo-
morphism ¢ : (M, m) — (M’,m’) such that "(W’) = (¢"(F/))4y coincides with the germ of
W at m, possibly up to reindexing the foliations #; of this web. One writes ‘W =~ ‘W’ when this
is occuring.

For simplicity, assume that M is a connected open subset in C" and that each 7; is defined by a
global holomorphic submersion U; — C¢, where c € {1,...,n — 1} stands for the codimension of
the web. For any i € [[d]], any k < c and any subset I = {i1,...,i;}with1 <i;j <ip <... < <gc,
one sets Qﬁ ; = dUi; A ... A dU;j. Then one defines Qé‘,i as the locally-free sheaf of Oy-
modules freely spanned by the Qf.‘ ;s, forall I c {1,...,c} of cardinality k. Given an open subset
Oc Mandk € {0,...,c}, one defines a k-abelian relation (ab. k-ARs) of ‘W on O as a d-tuple

(771-);1:1 € ]_[f:1 Q’% such that Z?: (ni =0in QK(0). The abelian relations form a vector subspace

of Q¥(0)®¢ and letting O vary among the open subsets of M, one defines a local system which
we will denote by AR*(‘W) or just AR* whenever there is no ambiguity about the web under
consideration. When working on a fixed domain D, we will allow ourselves to use the same
notation AR*(“W) for the vector space of k-ARs on D, which, rigorously, should be denoted by
ARM(W)(D).

By definition, the k-rank r*(“W) is the rank of AR*(“W). It is an element of N = NU{co} which
is invariantly attached to “W: two equivalent webs have the same k-rank, for any & less than to

10Classically, one requires that the tangent spaces of the leaves of a web satisfy a certain general position assumption
(everywhere or only at the generic point of M), but it is not the case here.
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equal to the codimension of the webs. Given a point m € M smooth for ‘W, let T,,'W be the
constant web on T, M =~ C" with first integrals the linear maps dU;(m) : T,,M — Ty,m)C* = C°.
For k € {0,...,c} and any o > O (with o > 0 if k£ = 0), let AR’C‘,(T,,{VV) be the space of k-ARs
(m)f:1 of T,,”'W with each n; being a k-differential form on 7, M with coefficients in Sym? (7, M)
(that is, polynomials of degree o~ on T, M). Then one defines the ‘o-th virtual k-rank of W at m’,
denoted by p’,‘n,a(‘W ), as the dimension of AR (T,,W). One verifies easily that the dimension of
the space of germs of k-ARs at m is less than or equal to the ‘total virtual k-rank at m’ p,, (‘W) :=
Yo p’,‘n’g(‘W). We thus define the ‘o-th (resp. the total) virtual k-rank’ p* (‘W) resp. p*(‘W)) of
the considered web as the value p’,‘n’g(‘W) (resp. pk (‘W)) for m generic.

The web ‘W is said to have ‘as maximal as possible’ (ab. AMP) k-rank when r*(‘W) = p*(‘W),
with this integer being positive and finite. In this case, we will also say that W is ‘k-AMP’. Being
(k-)AMP has to be view as a strong feature of a web, a wide generalization of the classical notion
in web geometry of being of ‘maximal rank’ (for more perspective on this notion, see [Pi2l §1.3]).

For any nonnegative k such that k < c, the total derivative gives rise to a linear map
(5) d* : ARN(W) — ARM (W),
d d
M)z — (dni)izy

Accordingly to the usual terminology, abelian relations in the kernel of @* will be said to be
‘closed’, and those in its image, ‘exact ARs’.

Of course, one always have an inclusion d“(AR*(‘W)) c Ker(d“*') in AR**!(‘W)) but, even if
one is considering the ARs locally, on a simply connected domain or even at the level of germs,
in general it is not true that this inclusion is an equality. Indeed, let y = (X,-)f: , be a germ of
(k + 1)-AR for ‘W, at a smooth point m € M of this web. This means that y; € O (M, m) is
F; basic for each i € [[d]] and that Zf: 1 Xi = 0. Let us assume moreover that y is closed, i.e. one
has dy; = 0 for any i. Hence any y; is locally exact thus one may first think that it is possible to
integrate } and construct a (germ of) k-AR 5 = (Ui)?z ; such that d*(n) = x.

But this is not always possible. Indeed, the n;’s, in addition to being primitives of the cor-
responding y;’s, must satisfy two additional conditions: (1) each 7; must be F;-basic, and (2)
Z?: (ni = 0in QK(M, m). These two conditions cannot always be simultaneously fulfilled. In
particular, the 2-abelian relation HLOGy, considered in this paper, although closed, is not exact
as an abelian relation (see the decompositions in direct sums (44) and (30) in Coro/Theorem(?)
and Theorem [3.14] respectively)

2.2. Gelfand-MacPherson webs. We review very quickly some material introduced in [PiS,
§4.5.1] to which we refer for further details.

Let G be a simple complex Lie group of Dynkin type D, and let H C G be a Cartan torus, with
associated set of simple roots ® C hg, where hg stands for the real part of the Lie algebra of H.
Let P be a standard parabolic subgroup, assumed to be maximal (to simplify), and let wp be the
vertex of D corresponding to it. If V = Vp stands for the G-representation of highest weight wp,
there exists a ‘highest-weight vector’ vp € V wich is of weight wp and such that P coincides with
the stabilizer of the line [vp] € P(V) and the orbit X = G - [vp] is closed in P(V). It follows that X

1 Another place to look is the last line of Table 1.
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is a homogeneous algebraic submanifold of P(V) which naturally identifies with G/P. Let Wp be
the set of weights of the considered representation, namely the set of weights w € hg for which
the corresponding weight subspace Vy, C V is non-trivial. The ‘weight polytope’ A = Ap ,,, of the
representation V is the convex envelope of Wp in hg. The Weyl group Wp = Ng(H)/H acts on
by and the set of vertices of A can be proved to coincide with the Weyl orbit W-wp of the highest
weight.

To a facet F of A (that is, a face of codimension 1), one can associate a type (Dp, wg) which
is a marked Dynkin diagram obtained from (D, wp) by removing an extremal vertex. Then V can
be seen as a representation for the simple complex Lie group of type Dg, noted by G, and there
exists a decomposition of G z-subrepresentations V = V' @ Vi where V- is the sub-representation
with highest weight wp. To the facet F is associated a one-parameter subgroup Hp of H and
denoting by Hp the Cartan torus of G, there is a surjective map of Cartan tori H — Hp with
kernel Hr which induces an identification H/4y, = Hp Then if Pp stands for the maximal
standard parabolic subgroup of G associated to wr, then the two following facts occur:

(@). setting X = Gp/Pr C PVp, one has Xp = X N PVp;

(if). the linear projection from PV onto PV gives rise to a surjective rational map ITx : X -->
Xp. Moreover, this map is equivariant with respect to the epimorphism of tori H — Hp.

Now we restrict the discussion to some particularly nice cased'] which contain those of the
minuscule homogeneous spaces hence the specific case we will be interested in. In [SK] (see also
[SS]), the author(s) consider a Zariski-open subset X sf ¢ X on which H acts nicely, and such that
the quotient Y = X*//H is a rational quasi-projective variety. From the point (ii). above, it follows
that TT descends to a rational map 7y : Y --> Xp/Hp where the target space has to be understood
as a quotient with respect to the action of Hr on Xy viewed as a rational action. A facet is said to
be ‘“W-relevant’ whenever Xr/HF has positive dimension. We define the ‘Gelfand-MacPherson
webs’ ‘Wg M and ‘WgM as the webs respectively defined by the face maps Il and np, for all
“W-relevant facets F of the weight polytope Ag p. From the equivariance property stated in (ii).
above, it follows that ‘Wg M is H-equivariant and that its quotien by H is precisely ‘WgM .

The most basic example to have in mind is the one when X = G,(C?>), which corresponds to
the case of type (A4, a)z) The moment/weight polytope is the hypersimplex Ay 5 = {(ti)f: | €
(0,177 | 21.5:1 t; = 2}. This polytope has 10 facets which are obtained by intersecting it with the the
affine hyperplanes cut out by ; = tfori = 1,...,5and 7 € {0, 1}. All the facets when 7 = 1 are
3-simplices, and the associated type is (A3, w3), hence these facets are not “W-relevant. Any facet
F; = Ay 5N {t; = 0} is a hypersimplex of type (A3, w;), with X, =~ G,(CH. Denoting by (€i)l~5:1 the
canonical basis of C>, the face map IT F, associated to F; identifies with the rational map GH(Cd) --»
Gz(C5 [{ei)) = G-(C*) induced by the linear quotient map C° — C>/{¢;). If one denotes by H and
Hyp, the Cartan tori of the linear groups acting on X and XF,, then the corresponding GIT quotients
respectively are X//H = G2(C%)//H ~ Mos and Xp.//Hp, ~ Mo4 =~ P'. And the H-equivariant
quotient of I, is the i-th forgetful map i, : Mo,s > MOA = P! (which actually is a morphism).
It follows that in this case, Gelfand-MacPherson web on Y = Mo,s is the 5-web with the five

12gee [SK], and in particular the list of cases to be excluded given in Proposition 2.1 therein.
3The best reference on this case is the great paper [GM] by Gelfand and MacPherson.
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forgetful maps as first integrals, hence is a model of the dilogarithmic Bol’s web 8: one has

— — 5
GM _ . ~ p! ~
Wi = W(xE, : Mos — Moa=P') =8

The main object of study in this paper is Gelfand-MacPherson’s web of the quotient, by the
rank 5 Cartan torus, of the spinor 10-fold Ss which is a homogenous projective variety of type Ds.

2.3. Birational geometry around the spinor 10-fold Ss. We recall some facts we will need
further in the paper. For details, see our previous article [Pi5]] and the references therein.

2.3.1. Groups of Lie type Ds. Let g € Sym?(V") be the non-degenerate complex quadratic form
on V = C!0 given by

DM

q(x) = > XiXiss

i=1
in the standard coordinate system (xi)l.lfl on V. The associated orthogonal group O(V, q) = O19(C)
is a simple complex Lie group of type Ds. Its universal covering is the so-called ‘spin group’

Spin;((C) and the canonical covering Spin;q(C) — O10(C) is known to be 2-to-1. The corre-
sponding Dynking diagram of type D5 we are going to work with is labeled as follows:

Ficure 1. The marked Dynkin diagram of type (Ds, w4). (The marking of the
fourth vertice corresponds to the choice of the standard maximal parabolic sub-
group used to construct the spinor tenfold, see below).

Coxeter matrix associated to the Dynkin D diagram of type Ds: it is the symmetric 5 X 5
matrix (m,~j)ij.:1 where for all i, jsuch that 1 <i < j <5, one has m;; = 1 and when i < j, one
has m;; = 2 if there is no arrow between the i-th and j-th vertices of the diagram, and m;; = 3
otherwise. The associated ‘Weyl group of type Ds’ is the group with generators s; fori = 1,...,5,
with relations (s;s;)" for any i, j € [5]]. In the case under scrutiny, the generators s;’s of Wp,
are involutions, which pairwise commute, i.e. (s;s j)2 = 1 except if the i-th and j-th vertices of
Ds are linked by one of its arrows, in which case one has (s;s j)3 = 1. To summarise, setting
J={(,j+D]|j=1,...,4} U{(@3,5)}, then for all distinct i, j € [5]], one has

2 .
—-s7=1;
1
(6) - (sisj)2 = 1 (that is s; and s; commute) if (i, j) ¢ J;
- (sisj)3 = 1 if the pair (i, j) belongs to J.

The explicit form of these relations will be used further in §2.3.6l
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2.3.2. The orthogonal grassmannian OGs(C!?), the spinor 10-fold S5 and the half-spin rep-
resentations. By definition, the ‘orthogonal grassmannian OGs(V)’ is the subvariety of the stan-
dard grassmannian Gs(V) whose points are the 5-dimensional subspaces I C V which are ‘totally
isotropic’, that is such that g|n= 0. It is known that OG5(V) is the disjoint union of two indistin-
guishable isomorphic irreducible components which will be denoted by OGS(V) with € = +.

The component OGZ(V), which will be the privileged one for us, is homogeneous under the
natural action of the ‘spin group’ Spin,o(C). In fact, if P4 stands for the standard maximal para-
bolic subgroup of the spin group associated to the fourth vertex of the Dynkin diagram of Figure
[l then one defines the ‘spinor 10-fold’ as the homogeneous variety Ss = Spin,,(C)/P4 which
can be proved to be isomorphic to OGZ(V). Indeed, the parabolic subgroup P4 being maximal,
Ss has Picard number 1 with its Picard group spanned by an ample class denoted by H. More-
over, Ss is Fano with —Ks = hp,H where hp, stands for the Coxeter number in type Ds (namely
hpy = 8). Actually, —Kg, is very ample and the anticanonical linear system gives rise to an equi-
variant embedding ¢ : S5 < P(S*) where S+ ~ H’(Ss, —KSS)v is a 16-dimensional Spin,;,(C)-
representation, one of the so-called half-spin representations S £ Then it can be proved that
the second Veronese embedding of S5 ¢ P(S*) =~ P’ coincides with the image of OG;(C5 ) in
P(A’V) obtained by taking the image of its inclusion into the ordinary grassmannian of 5-planes
in V post-composed with the standard Pliicker embedding G5(V) — P(AV).

The half-spin representations are know to be minuscule representations: for € = +, the Weyl
group Wp; acts transitively on the set of weights ¢ which is of cardinality 16. Each weight
space is a complex line and S € admits a basis (v4)zewe With v4 being a weight vector of weight
w for any @ € W*. In other terms, there is a decomposition as a direct sum in which each weight
subspace is of dimension 1:

(7 S€= Opew<Cvy .

The set of weights in 2¥¢ can be described quite explicitly as the set of 5-tuples g/2 for all
g = (8,')?:1 € {£1} whose parity p(e) = &1 ---&5 € {x1} coincides with e. More explicitly,
denoting by (ey, ..., es) the standard basis of R’ ~ I)ID{5 and setting ex = Xk ek for any K c [[5]],
the elements of W* (resp. of W™) are the vectors

1
(®) wy = 5(6[[5]1\L -er)

for all subsets L C [[5]] of even (resp. of odd) cardinal.

2.3.3. Wick’s embedding. As it is well known, a generic 5-plane in V can be represented by
a matrix My = [Ids,A] € Matsyx0(C) where Ids stands for the identity 5 X 5 matrix and A a
square matrix of the same size but arbitrary otherwise, the associated 5-plane to M4, denoted
by {4 = ([Ids,A]), being the one spanned by the vectors whose coordinates (in the standard
coordinate system) are the given by the five lines of M. Then one verifies easily that the 5-plane
{y 1s g-isotropic if and only if the matrix A is antisymmetric. Moreover, it can be proved that
for A, B € Asyms(C) the two following facts are satisfied : (1) {4 and {p belong to the same
components of OGs(V), that we choose to be OGg(V); (2) {4 = {p if and only if A = B. We then

4The two half-spin representations S * and S ~ are isomorphic, but not in a canonical way.
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have that the affine map

W : Asyms(C) — OGZ(V)
is an embedding which induces a birational equivalence
©)) Asymg(C) =~ OG5 (V) = Ss.

One can deduce from it a birational parametrization of the image of S5 in P(S*) ~ P>, known as
the Wick’s parametrization, which is easily described using the following notations:

— for X € Asym;(C) and i € [[5]], we denote by X; the symmetric 4 X 4 matrix obtained by
deleting the i-th line and the i-th column from Y;

— Pf stands for the pfaffian of an antisymmetric matrix;

— for any i, j € [[S]], x;; denotes the rational function on Asyms(C) associating the (i, j)-th
coefficient of an antisymmetric 5 X 5 matrix;

— let [[5]% be the ordered set of pairs (i, j) such that 1 < i < j < 5, with the lexicographic
order. Then for k = 1,...,10, one denotes by X; the coordinate x;; if (7, j) is the k-th
element of [[5]]3: one has X; = x12, X = x13, ..., Xo = x35 and X9 = x45.

The projectivization

(10) W = [W]: Asyms(C) — P
of the affine map
(11) W : Asyms(C) — C'°
X = () — (1. X1, ..., Xi0. PE(X}). ..., PA(X5))

is an affine parametrization of S5 c P'3, known as Wick’s parametrization of the spinor variety.
It enjoys the nice property of having its components (as given in (L)) corresponding to the direct
sum decomposition of S* into weight subspaces: for each component C of W, there is a well-
defined weight w(C) € W* such that C is the composition of W with the linear projection onto the
weight subspace Cvy(c) (With respect to the decomposition in direct sum (7). The weights w(C)
are given by the following formulas where we use the notation (8): one has

ID(I) =Wy, m(xl-j) = m{i,j} and ID(Pf(Xi{)) = m[[s]]\{k}
for all (i, j) € [[5]]3 andallk=1,...,5.

2.3.4. The action of the Cartan torus on S5 and a birational model of the associated torus
quotient. We now recall some results of Serganova and Skorobogatov about the action of the
Cartan torus Hp, of Spin;y(C) on Ss.

To simplify the notation, we write H instead of Hs below. Following Serganova and Sko-
robogatove, we denote by S;f the subset of points x € Ss which are stable under the action of H
with stabilizer Staby(x) = Z() = {1}. It is open in Ss, and of codimension > 2. One can prove
that it contains the points of S5 whose at most one of the 16 Wick coordinates vanish. In particular,
if Hy, stands for the coordinate hyperplane in P(S*) given by the vanishing of the w-coordinate,
S;f contains the generic point of the coordinate hyperplane section S5 N Hy,.

From a direct application of GIT, one obtains that the following points hold:
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e the quotient Y5 = S;f . /H is a 5-dimensional quasi-projective variety which is a Zariski-
open subset of the GIT quotient Y5 = Ss//H. Moreover, the canonical map v : S;f — Ys

is a geometric quotient: the preimages of v are the H-orbits in S‘;f ;
o for any weight w € W+,
(12) Dy =(S¥ N H,)
is an irreducible divisor in Y5, that we will call ‘the weight divisor of weight w;

e one has v(S;) = Y 5, where we have set

s3=85\(J Ho) and  ¥i=¥s\( ] Du).

weW+ we+

Moreover, Serganova and Skorobogatov proved very nice results about the quasi-projective vari-
ety Ys:

e let T be the character lattice of the diagonal subtorus 7 of GL(S™*) generated by the 1-
parameter subgroup of scalar matrices C*Idg+ and the image of H by the natural embed-
ding Spin;o(C) c GL(S*). Then there is a natural isomorphism of lattices T ~ Picz(Ys)
(see the very end of [SS]);

o the set { Dy}, cqu+ 1S the unique minimal set of Z(-generators of the the semi-group of
effective divisor classes in Picz(Y'5) (see [Skl, Theorem 1.6]);

o it follows from [Sk, Theorem 2.2.2] that there is a canonical isomorphism of group
(13) Wp, ~ Aut(Ys).

The variety Y5 is rational. We recall below the construction of the birational equivalence
C3 ~ Y5 considered in [Pi5)]. We will work with it further to get in explicit form the birational
realization of the Weyl group Wp, = Aut(Y’5) induced by this birational identification.

The quotient of S5 by Hp, can be birationally identified with that of OG;(Clo) by the Cartan
torus Hz)S of SOs(C'9), hence to the one of H = (C*)° on Asyms(C), where the action of the
latter torus is given by

5 3
y
i,j=1

for any h = (h,-)?:1 € H = (C*)° and any A = (Aij)z =1 € Asyms(C). Identifying C(Asyms(C))
with C(x; ;|1 <i < j < 10) (where x;; stands for the map associating the (i, j)-th coeflicient), one
can prove the

A-h = (hihjAy)

Proposition 2.1. 1. The algebra of rational functions on Asyms(C) invariant by the action of H
is free and generated by the components of the rational map Ps : Asyms(C) --> C’ given by

0 X2 X13  Xi4 XI5
2 0 n3 x4 s X45X13 X15X24 X12X35 X23X[4 X34X25
-x13 —x3 0 X34 X35| , ) > s .
~X14 —Xos4 —x34 O Xys X15X34 X12X45 X15X23 X34X12 X23X45

—x15 —X5 —X35 —Xa5 O

Consequently, Ps is a birational model of the quotient map v : Ss --> Ys.

15Erom a matricial point of view, it is more natural to see the action of (C*)° on Asyms(C) as a right-action, but
this is just a matter of notation.
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2. Moreover; the map Ps admits the following map as a rational section:

0 1 yi3 yia 1
-1 0 1 Y24 Y25
Yy =(y13:Y14,Y24. )25, y35) — Y() = | =y13 1 0 I yss |,
-yi4 -y -1 0 1
-1 —ys -y35 -1 0

i.e. setting C(y) = C(y13, Y14, Y24,¥25,¥35), one has Ps o Y = Idc(y) (equality as rational maps).

Considering this proposition, let Y5 be the affine space C> with the rational coordinates y1, . .., ys
related to the y;;’s appearing in the definition of Y above, via the relations y; = y13, y2 = yi4,
Y3 = Y24,y = y25, Y = y35. From the relation $s o ¥ = Idc(y), one deduces that the map © defined
by requiring that the following diagram of rational maps commutes

(14) Asyms(C)—2— S5 c P(SY)

Y< J?’s Jv
Ys —2 5 Y5,

is birational. We thus have a birational identification
(15) ©:C=Ys->Ys

and it is the one we will always work with in what follows.

The weight divisors D, in Y5 will be important for our purpose hence it is interesting to
investigate how they appear (or do not appear) on the birational model Y5. Remark first that
Y is polynomial hence so is the composition W o Y : Y5 — S5 c P(S*) =~ P>, Viewed the
definition of the weight divisors in Y5, we get that their pull-backs under ® are cut out by the
components of W o Y. Since some of the entries of ¥ (y) are equal to 1, we see that some of the
weight divisors in Y5 have no pull-back as divisors in Y5 under @. Clearly, there are 10 divisors
in Y5 corresponding to some Dy,’s, and these are the five coordinate hyperplanes {y; = 0} with
i=1,...,5, and the other five are given by the vanishing of the equations obtained by taking the
pfaffians of the 4 X 4 principal antisymmetric submatrices Y, ..., Y5 of Y(y). These subpfaflians,
denoted by P; = Pf(Y;) fori = 1,...,5, are given by:

(16) P1=1+y5—y24y35, Po=1+yi;3-y35v14, P3=1+Yy2—y14y25
Py=1+y35—=y13y25, Ps=1+yu—yi3yu.

Then setting

A7) &i=yi3, L=y4, B=y4, L=y, {5=y5 and fius=P; forie[5],
wedefine Z, = {& =0} c Ys fork = 1,...,10 and one sets

(18) Z=UZc={&-00=0} and  ¥Yi=C\Z.
One verifies easily the

Proposition 2.2. The map © is defined at every point of Y5 and sends it into Y. Actually, one
has ®(Y§) =y 2 and the restriction G)Iy; induces an isomorphism from Y; onto Y ;
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2.3.5. Del Pezzo quartic surfaces and Serganova-Skorobogatov embeddings. The geometry
of a del Pezzo quartic surface (and in particular the geometry of the lines contained in it) is related
in a nice way to that of the spinor tenfold Ss and of its torus quotient Y's. This is important for our
purpose and because it also allows a convenient way to work with the weights of the minuscule
representation S *, we recall it now.

Let dP4 be a fixed smooth del Pezzo surface. In finitely many ways (none of which more
canonical than the others), it is isomorphic to the total space X = Blp(P?) of the projective plane
along a subset P = {py,..., ps} of five points p; in general position in P2, There are 16 lines in
X and each can be identified with its class in Picz(X). If ¢; stands for the class of the exceptional
divisor over p; in the blow-up 8 = Bp : X = Blp(P?) — P? along P (for any i € [[S]], and if &
denotes the class of 8~!(¢) for any line £ c P?\ P, then the Picard lattice Picz(X) is freely spanned
over the integers by the ¢;’s and & and the the (classes of) lines in X are the following:

e, h—ei—e; and 2h — e

with i and j distinct and ranging in [[5]], where we use the notation e;,; = 22:1 er. We will denote
by Ly the set of lines contained in X, viewed as a subset of the Picard lattice of X.

As is well-known, the lines of X can be put in a 1-1 relation with the weights in 2*. Let us
recall how it goes: let R be the orthogonal, for the intersection product, of the canonical class
Kx = —3h + e, in the Picard group Pic(X) = Picz(X) ® R. Endowed with the opposite of the
(restriction of the) intersection product, R becomes a ‘root space of type Ds’: it is Euclidean and
admits as a basis the following five ‘fundamental roots’

pi=en1—¢ (=1,...,4) and ps=h—e —e—e3.

Denote by IT : Pic(X) — R the orthogonal projection (whose kernel is (K) = R*+. Let ( f,-)l.5:1
be the other basis of R determined by the relations f; — fiy1 = —p; = ¢; —e;x fori=1,...,4 and
fa+ f5s = ps, and let

5
u; fi — (ui)izl

DM

(19) y:R— R,
i=1

be the associated isomorphism. Then the linear map u = o IT : Pie(X) — R? induces a bijection
(20) w: Ly = W*
from the set of lines in X onto the set of weights of S* which is explicitly given by
pled) = wspy, plh—ei—ej) =wgj  and  u(2h - err) = Wy,
for all i, j € [[5]] distinct.

The previous bijection Ly =~ MW" can be used to compute the action of the Weyl group Wp,
on the weights of S*. Indeed, building a graph with the i-th vertice corresponding to p; and an
arrow between two vertices with labels i and j if and only if the two corresponding roots satisfy
(0i,p;) = 1, one exactly gets the labeled Dynkin diagram of Figure Il Then foranyi =1,...,5,
one considers the map

(21) S,'=Spiidl—>d+(pi,d)pi.

One verifies that it is an involutive automorphism of (Pic(X), (-, -)) letting Kx invariant, hence it
gives rise to an orthogonal involution of R. The s;’s satisfy the relations (6) so what we have
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obtained is a concrete realization of the Weyl group Wp,, previously abstractly defined as a sub-
group of O(R) (in particular, this justifies having denoted by s; the map (21))). This will allow us
to compute in an explicit way the action of Wp, on the set W* of weights of S*. As an example,
we treat the case of s;. Via (1)), it acts linearly on Pic(X) and is fully determined by indicating
that it exchanges e; and e, and lets all the other generators e3, e4, es and & unchanged. We deduce
that its action on Ly ~ W* is given by

(22) W[s|\(1) <> Ws)\(2) and Wy k) <> W2k

with k = 3,4, 5, with the convention that the exchanges above (indicated by the double arrow «)
are the only non-trivial actions of s; on the set of weights.

*

The 1-1 correspondence between Ly and W* actually can be given a geometric origin. We
denote by L = Uge o€ with the lines viewed as subsets of X, and we set X* = X \ L.

For any line £ C X, let o, be a generator of the 1-dimensional space of global sections
H°(X,Ox(¢)) and let us consider the map & : X --» S* the w-component of which, for any
weight w € W+, is given by the section o, for the line £ which corresponds to w up to the bijec-
tion p : Lx ~ W* discussed above: &z = (07-1(w))pemy+- This map becomes a morphism when
restricted to X* and is well-defined up to post-composition by an element of the diagonal torus of
GL(S*). We claim that there is a way to chose the components o such that the projectivisation

(23) Fr=[64]: X" = P(S™)

has values in S7. Moreover, this map extends to a well-defined morphism from X to S‘;f denoted
the same. For any weight w € W™, let H,, be the coordinate hyperplane in P(S *) corresponding
to the vanishing of the affine w-coordinate (with respect to the decomposition in direct sum (7).
Then one has FL_I(Hm(g)) = ¢ for any line ¢ € L, which gives a geometric explanation to the

bijection (20).

It can be proven that the composition v o Fy makes commutative the following diagram

sf
(24) . S I cP(S*)
X Jss Y5

where the map fss : X — Y5 is an embedding which has been introduced (in a non-constructive
way) by Serganova and Skorobogatov in [SS] (hence the two S’s in the notation fsg). In addition
to being an embedding, fss satisfies several nice properties, such as the fact that the preimage
of a weight divisor of Y5 is the line in X corresponding to the weigh or that it induces an
isomorphism of Picard lattices f3 : Picz(Ys) ~ Picz(X) ~ Z°.

For our purpose, we need to make explicit the rational map Fy o 8! : P? --» Ss, or rather its
birational model

Gr=W'loFrop!:P?-s Asyms(C).

161 mathematical terms: for any weight w € W*, one has fS‘Sl(Dm) = { C X, where ¢ stands for the line such that
() = w.
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Assume that X is the blow-up of P? in five points p; which, with respect to the standard homoge-
neous coordinates, are the vertices of the standard simplex for py,..., ps, and with ps = [a : b : 1]
where a, b are two complex numbers only assumed to be such that ab(a — 1)(b — 1)(a —b) # 0
(this to ensure that the p;’s are in general position in P?). In [Pi5]], we have established that the
expression of Gy in the affine coordinates x, y is given by

0 -b-a —(a+1)y (1-ya y—>b
b+a 0 —x(1+b) 1-xb x—a
Gr(x,y) = (a+1y x(1+b) 0 y—x bx — ay
Ca| y—Da (x=Db x-y 0 b-Dx+(l-ay-b+a
b-y a—x ay—-bx (A-bx+@—-1ly+b—-a 0

where Cy, = (@a—b)xy+b (1 —a) x+a(b— 1)y is an affine quadratic polynomial which cuts out
the (affine part of the) conic passing through the points py, ..., ps.

In the considerations above, a and b are fixed parameters, but it makes sense and it is interesting
to let them vary. Doing this, G is seen as a rational map from C* (with affine coordinates x, y, a, b)
onto Asyms(C), that we will denote simply by G. This map can be considered as a birational
model of a putative rational map G : dP4 --> S5 C P(S™), where the source space is the ‘universal
surface dP4 over the moduli space Mgp, (birational to P?) of quartic del Pezzo surfaces’, such
that the restriction of G along a fiber of dP4 — Mgp, birationally coincides with the map 23] of
the corresponding del Pezzo quartic surface.

In the putative setting considered above, post-composing G with the quotient mapping Ss --»
Y5 would give amap F : dP4 --> Y5 whose restriction along the fibers of the universal del Pezzo
quartic surface would coincide with Serganova-Skorobogatov’s embedding of the surface. The
well-defined rational map

(25) F=(F)_ =Ps0G:C"-C°

can be thought of as a birational model of 7. Its components F; € C(x,y, a, b) are the following
ones:

_(ay-bx—a+b+x—-y)a+1)y

F
! (b—y) (~y + %)
r _x(b+1)(y—1)a
2T (y+ 0k ta
o (b-y) (=1 +x)b
ST hra)(-0b+x+(-Da-y)
Py = (=y +x)(a—x)
Y TX(=0b+x+(-Da-yb+1)
b+ a)(ay — bx)
and Fs5=

G-»xB+1)

Since for any del Pezzo quartic surface, the preimages by the associated map fss of the 16
weight divisors Dy, = v(Hy N S;f ) are the 16 lines of the del Pezzo surface, one can expect
something similar for the map F. And this does occur in a way. Indeed, the divisor Z in Y5 has
only 10 components, but it can be verifies that the preimage of Z = {{r = [] 1'131 {i = 0} by F has
16 hypersurface components somehow. More precisely, one verifies that the support of the divisor
cut out by {z(F) = llfl £i(F) = 0in C* has 15 irreducible components, namely the irreducible
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affine hypersurfaces cut out by the following polynomials in the variables x, y, a and b:
x,y,x-1,x-a,y-1,y-b,x-y,bx-ay,a,a+1,b,b+1, b+a,
ab(x-y)—(a-b)xy+ay—bx, (a-1)y—-(b-1)x—a+b.

Together with the hyperplane at infinity in a compactification C* c P*, this makes 16 irreducible
divisors in total, which correspond to the 16 weight divisors Dy, (with w € W*) of Y5. We will
not really use this below, but we wanted to stress this fact which indicates that the coordinates
X, Y, a,b and the map F are well-adapted to study Y5 from a birational point of view.

2.3.6. The birational action of Wp,. Conjugating the isomorphism (I3]) by the birational iden-
tification (I3) gives rise to a birational representation of the Weyl group Wp, into the Cremona
group Bir(C>) of birational transformations of C>. Our goal here is to make this representation
explicit.

Recall that Wp, = N/Hp, where N = Nspinm(c)(HDS) stands for the normalizer of Hp, in the
spin group. From the proof of Theorem 2.2 in [SK], we know that the action of an element w €
Wp, on Y5 is induced by the one of a lift W in the normalizer. Recall that w acts by permutations
and transitively on the set of lines £ and acts also naturally on the set of weights W*. Moreover,
since the bijection (20) is Wp,-equivariant (as an easy verification shows), one deduces a natural
(but naive) lift for w, namely the linear map w on S* defined requiring that it acts by permuting
the element of the weight basis (Vo)zems+ of ST (see (@) according to the weight, i.e. one has
W(Ve) = V(e for any weight @w. However it is not the case that this lift belongs to the normalizer
of the Cartan torus. Indeed, it is by no mean canonical, it actually depends on the chosen weight
basis (Vg )gzew+. Since each v is only well-defined up to multiplication by a non-zero scalar, we
look for a lift W acting as vg +— Ay - Vi) With A € C* for any @.

Let us apply this strategy to the first generator s1 of Wp,. Let us first consider §;, which stands
for the ‘dumb lift’ of s; mentioned above. Given n = W(X) for

0 X12  X13  X14  Xi5
-x12 0 X3 Xo4  X25
X=|-x3 —x13 0  x3¢ x35 [€Asyms(C),

x4 —Xx14 —x3¢ 0 x5
-x15 —Xx15 —x35 —xs5 0
generic, one easily deduces from (22) the weight coordinates of L;(17) = (5; c W)(X) : one has
n= (1,)612, X13, X14, X15, X23, X24, X25, X34, X35, X45, Pf(X3), Pf(X5), Pf(X3), Pf(X3), Pf(Xg))
and Li(n) = (1,)612, X23, X24, X5, X13, X14, X15, X34, X35, X45, Pf(X5), Pf(X;), Pf(X3), Pf(X;), Pf(Xg))
(the coordinates which have been permuted in §;(7) are in blue). The transformation 7 — L;(17)
is induced by an invertible linear map L; of S* (which permutes the coordinates in blue) which
however is not an element of the image of the spin group in GL(S *) since it can be verified that
Li(Ss5) ¢ Ss. Then let L; € GL(S*) be obtained from L; by post-composing it with a diagonal
matrix: there are non-zero complex numbers Ay for k = 0, ..., 5 and 4;; for (i, j) € [[5]]3 such that
L is entirely characterized by the fact that one has
Li(n) = (/lo,/llz x12, 413 X235 Ad1a X04 , A15 %25, 423 X135 A2a X145 A25 X15, A34 X34, A35 X35, A45 X45 ,

Ay PE(X3), L PE(X;) . A3 PR(X3) . A4 PE(X3), A5 PE(X3))
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fornp = W(X) with X generic. Since post-composing by an element of the Cartan torus is irrel-
evant, there is no loss in generality by assuming that 4; = 1 for k = 1,...,5. That L; belongs
to the normalizer of Hp, in the spin group implies in particular that L, stabilizes Ss. Setting
A={2}U{A;jl1<i<j<5}and

0 Aipxiz Aizxs Adigxa Ags xos
_p | ~Arx2 0 Ay xi3 Auxia Azsxis
X = - —A13 X3  —A23 X13 0 A34 X34 A35 X35
Ol —diaxos —Adpaxis —Azax34 0 A4s X45

—A15 x5 —Aps x5 —A35x35  —A4s X45 0

the condition L;(Ss) = Ss is equivalent to the fact that the following pfaffian relations are satisfied
for any generic (hence for any) matrix X € Asyms(C):

(26) Pf(X;) = Pf(X;), Pf(X;) =Pf(X;) and  Pf(X;) = Pf(X;) for s=3,4,5.

These relations are polynomial identities in the indeterminates x;; with 1 < i < j < 5 whose
coefficients are rational expressions in the elements of A. Assuming that all these coefficients are
zero corresponds to a system of polynomial equations in the A’s which is not difficult to solve.

One obtains that the matrix X is necessarily the following one:

0 X12 X3 X4 X25
-x12 0  x;3 x4 X5
i| —x3 —x1i3 0 -—x34 —x35
—x4 —X14 X33 0 —xus
—X25 —X15 X35 X45 0

The Cremona map o induced by s is given by P5(Y) where s and Y are given in Proposition
2.1l More explicitly, for y = (y13, Y14, Y24, ¥25, ¥35), one has

0 I yiz yu 1 0 1 Ly s
-1 0 1 yu s -1 0 yi3 yu 1
o1(y) = Ps(Y(y)) =Ps|| s -1 0 1 oy [ [=Pslil 1 oy 0 =1 s
-yi4 —y4 -1 0 1 -y -yu -1 0 -1
-1 -»s -y -1 0 -y -1 yis 1 0
One obtains eventually that oy is the following involutive Cremona transformation:
1 1 35
(27) oy (— —Y24Y13, ~Y14Y25, ——, — :
Y25 Yz Y13Yas

Proceeding in a similar way for each of the four other generators s5, 53, 54 and s5 of Wp,, one
obtains the following explicit formulas for the Cremona transformations o-; induced by them:

. ( 1 V14 1 )
oy —, - s T TY35Y24 5 —Y13Y25
Y24 Y24Y13 Y13
1 y25 1
(28) 03y '—>(—)’14y35, —V24Y13, — 5 — , —
Y35 Y35Y24 Y24

Y13 1 1 )
—, —Y14Y25, —Y24Y35, —
Yi4

Y35Y14 ’ Y35
5. 2, 14P3’ Py P 35P1

(where in the formula for o5, the P;’s stand for the sub-pfaffians defined in (16)).

0'4:y»—>(—
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Proposition 2.3. The map s; — o fori=1,...,5 gives rise to an embedding of groups
(29) Wps = {s1,...,55) — Bir(C?)

which corresponds to Skorobogatov’s isomorphism Wp, =~ Aut(Ys) up to the birational identifi-

cation (13).

Proof. Actually, this follows from [Sk, Theorem 2.2] since the formulas above for the o;’s have
been obtained by following, in the specific case under scrutiny and working in a explicit manner,
the proof given by Skorobogatov in his paper.

But that the proposition holds true can also be verified as follows: to ensure that (29) indeed
induces a morphism of group, it suffices to verify that the Cremona transformations oy,..., 05
satisfy all the relations (6) satisfied by the generators s; of Wp,. Using the explicit expressions
for the o;’s given above, this is something straightforward to check. Using a computer algebra
system, there is no difficulty to show that the o;’s generate a finite subgroup of Bir(C>) with 1920
elements. Since this is precisely the order of Wy, it follows that the morphism of groups ([29) is
injective. m|

We will denote by #), the subgroup of Bir(C?) generated by the o;’s:
(30) Wps = #p, ={01,...,05) C Bir(C?).

Remark 2.4. The birational realization Wp, of the Weyl group Wp, seems to be new.

Because Wp, acts by permuations (and transitively) on the set of weights * of S*, it acts
also (in exactly the same way) on the set of coordinate hyperplanes { Hy, } g+ hence on the set
of weight divisors { Dy, },,cqn+ C Picz(Y) as well. For w € Wp,, denote by ¢,, the corresponding
automorphism of Y. Then for any weight w and any w € Wp., one has ¢,(Dy) = Dyyw) from
which it follows that ¢,, induces an automorphism of Y. Combined with Proposition 2.2] this
gives us

Proposition 2.5. Foranyi=1,...,5, the Cremona transformation o; is defined on Y5 = C3\ Zs

and gives rise to an automorphism of the pair (C°, Zs). Consequently, the image Wps of the group
embedding is a subgroup of Bir(C>) N Aut(C> \ Zs).

3. The Gelfand-MacPherson web W;M and its abelian relations
5

This is the main section of the paper, in which we study the web ‘W ?’1 , in particular its abelian
relations, which we make explicit and determine their invariance properties relative to the action
of the Weyl group Wp,.

3.1. The web ’W;M in coordinates. We use here some results of [Pi5, §4.5] to which we refer
5
the reader for more details.

The moment polytope of the spinor tenfold, denoted by Ap,, is the 5-demihypercube, realized
in bhp, = R’ as the convex envelope of W*. It has 10 + 2% = 26 facets (= faces of codimension
1): 10 are 4-demihypercubes, the 16 other being 4-simplices. The former are facets of type Dy,
the latter of type A4 (see [PiS, Fig. 1]). Seeing Ap, as the convex envelope of lines in the Picard
lattice of a given smooth del Pezzo surface X = dP,, and seeing the facets as determined by their
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set of vertices, the facets of type A4 are in correspondence with the description of X as a blow-up
of P? in 5 points, the five corresponding exceptional divisors on dP, being the vertices of the
corresponding facet. As for the facets which are demihypercubes, they correspond to the conic
fibrations on X, the vertices of each such facet being the irreducible components (lines) of the
non-irreducible fibers of the fibration.

Working in R’ by means of the isomorphism (I9), then first one has that ¥(23*) is the set of
S-uplets %g with € = (E,-)?:1 € {£1}° even in the sense that € --- €5 = 1. Then it can be verified
that the facets of type A4 are given by intersecting Ap, with the affine hyperplanes cut out by
Yo &x; = 3/2forall & = (&), € {+1} which are odd (that is such that & ---&5 = —1). As
explained in [PiS]], the A4-facets of Ap, are ‘web-irrelevant’ and have not to be considered further.

The 10 demihypercubical facets are the intersections Ag’i =Ap,N{x;=¢€/2}fori=1,...,5
and € € {+1}. These 10 facets are ‘web-relevant’ and from the material of [Pi5| §4.5] (in particular
Figure 1 therein), we can see that the face map associated to the facet Ag’i is a dominant rational
map w : IIf : S5 --» S4. Here the target space Sy is the ‘spinor 6-fold’: it is the homogeneous
space of type (Dg4, ws4). Identifying P7 with the projectivization of C & Asym,(C) ® C =~ C8, the
spinor 6-fold admits an affine parametrization a la Wick given by

Wy : Asymy(C) < S4 c P’
M+—[1:M:Pf(M)],

from which it follows that S4 is isomorphic to the smooth hyperquadric Q° c P7.

As for the expressions of the face maps ¥ read in the antisymmetric matricial charts associated
to Wick’s parametrizations of the two corresponding spinor manifolds, there is a simple (and nice)
formula when € = +1: for i € [[5]], one has

@ = W;' oyt o Ws : Asyms(C) > Asymy(C)
Ar— A;

where A; stands for the 4 X 4 antisymmetric matrix obtained from A by deleting its i-th line and its
i-th column. One can give formulas for the maps 5: read in Wick’s charts (see [Pi5, Prop. 4.17]),
but none as nice as the one above for the 5:

From the explicit formulas in Wick’s charts for the face maps, one easily gets some formulas
for some birational models of the Hp,-equivariant quotient 7 : Y5 --> Y, of the face maps IT;.
Let us denote by W}i M the pull-back of ’ng’l = W(n? )iegsy Under the birational map (I3):

GM _ M

wiM = o1 (W),
xplicit first integrals tor ave been given 1n [P1Sf]. Fori = 1,...,5, let F; (resp. F;5) be
Explicit first integrals for Wy?* have been given in [Pi5]. For i = 1 5, let F; (resp. Fi;5) b

the foliation on Y5 induced by ni o @ (resp. by 7 0 ©).

7The reason behind the dichotomy for the formulas of the face maps CI~>Ii read in matricial charts is that the target
spaces of the @;’s are naturally identified with S4 embedded in P(S;) whereas the images of the ®;’s naturally live in
the projectivization P(S ) of the other half-spin representation of Sping(C). See [PiS, §4.5.2] for more details.
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Proposition 3.1. The following rational functions are first integrals of the foliations F;:

U = ( Yiayss —yi13 — 1 13 (V14y25 —y24 — 1) )
yia (13y25 = y35 — 1) 7 y1a (13y2s —y3s — 1)

Uy = (yzs , Y24)35 )

(1 yiayss ( yaayss—ys—1 Yiay2s = yo4 — 1
U2 il ) U7 - 5
Y13 Y13 24 (V13y25 —y35 = 1) y2a (y13y25 —y35 — 1)
13(2ay3s —y5s = 1) yuayss —yiz—1
I A e A e e e
yi3y2s —y35 — 1 y13y2s —y35 — 1
Uy = ( L yi3yss ) Us = (y14 (v24y35 —=¥25 = 1) Y24 (V14y35 —y13 = 1) )
yis ¥3s yiays =y —1 7 yiayss —yu—1

_ ( Y24y35 — ya5 — 1 y25s (V14y3s —y13 — 1) )
Uip = .

Us =(y14,y13y24) ,
V35 V1ay2s —y24 — 1) y35 14y25 —y24 — 1)

The choice of the specific first integrals above is motivated by the fact that it will induce nice
forms for the abelian relations of W}QSM we will deal with. For describing the ARs of WI(,;5 M it is

convenient to introduce a ‘third component’ to the first integral U; = (U; 1, U;2). One sets
(32) Uz=1+Uj1 - U
fori =1,...,10 and via straightforward computations, one gets:

Yy —yua—1
63 =
(y13y2s —y35 — D ya

Uiz =—yuys+ys+1

_=yayss +yi3 + 1 ~ s (Vizy2a —yia— 1)
Uyz = Uiz =
Y13 24 (V13y25 —y35 — 1)
35 V13y24 = yia — 1)
(33) Usz = —yay2s tyu +1 Ugs =
yi3y2s —y35 — 1
—y13y25 +y35 + 1 yi3y24 —yia— 1
Uss = Uy = ———
V35 y1ay2s — ya4 — 1
13y25 —y35 — 1
Us3z = —yizyu +yua+1 Uiz = Y13J25 7

T s s —yau - D
The most important property which the U;’s fori = 1,...,10 and s = 1,2, 3 satisfy is given
by the

Lemma 3.2. Up to a sign, any U, s can be written as the product of some factors of the form £l
where the ¢;’s are the affine polynomials on Ys = C> defined in (7).

The five first functions U; define a subweb of ’ng M which will be of great interest for us. This
web will be denoted by WESM , it is defined by simple monomial first integrals: one has

Y35 Y35

(34) Wy, =(W(()’25,)’24y35), (ﬁ M;%) (y24,y14y25), (L, M) (y14,y13y24)).
*

Essentially all the results to come have been obtained my means of explicit computations using
the explicit expressions above for the first integrals of the webs we will consider. For this reason,
all our results will be stated for the birational models WﬁM and W;S but are of course valid for

. : GM + +
their geometric avatars Wy " and Wy = W(r] )5y as well.
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3.1.1. Ranks. Determining the virtual ranks of a c-codimensional web ‘W defined by rational
first integrals depending on n variables, amounts to computing the rank of certain vector spaces

defined over C(uy, ..., u,), where the u;’s are to be regarded as the affine coordinates of the generic
point of C".
As for the k-abelian relations of ‘W, for any k = 0, ... ., ¢, they correspond to the solutions of a

linear differential system (which is not difficult to make explicit), and which is of finite type when
the corresponding virtual rank is finite. In such cases, a computational approach similar to the
one described in [Pi2, §1.5] can be employed to determine the k-rank of the web.

The methods just outlined for computing the virtual or actual k-rank of a given web can be
implemented in a computer algebra system. This provides computationally effective techniques
for determining these invariants[™ Using these, one easily computes all the ranks of the web
WeM:

Y5

Proposition 3.3. 1. One has
po(WyM) =(15,15,10,1)  pj(WyM) =(15,20.15,2)  p3(WgM) = (5.5.1)
ro(WyM) =25 r(WyM) =35 r(WyM) = 11.
In particular, Gelfand-MacPherson’s web Wg M has AMP 2-rank.
2. One has
po(Wy,) = pi(Wy,) = 5.1 p3(Wy,) = ()
ro(Wy,) =5 r(Wwy,) =6 n(Wy,)=1.
In particular, the 5-web W;S has AMP k-rank for k =0, 1, 2.
3.1.2. The master 2-abelian relation HLOGy, of WI(,;SM . Given three variables u;,u> and us

with the last one expressing in terms of the first two by u3 = 1 + u; — up, one considers the
following ’logarithmic’ 2-form on C?

(35) Q=Inuydlnup AdInuz —Inur dlnu; Adlnus +lnu3 dinu; ANdlnuy
that is
duy N d duj AN d du; N d
(36) Q= lnu (u) o (u) lnus (#) ,
uzu3 ujuz upuz
or even more explicitly, setting x = u; and up = y:
1 1 1
Q= (— L nu3)du1 A duy
upuz  uiU3 Ul
In(1 - 1 1
(37) :(n( X y)+ n0) - n() )dx/\dy.
xy xl+x-y) yd+x-y)

18Maple worksheets for computing the k-ranks of webs in an arbitrary number of variables are available from the
author upon request.
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Let I be the hypercube formed by 5-tuples (y,~)l.5:1 €10, 1[° and denote by U an arbitrary but

fixed open domain containing it. Since the five pfaffian determinants Py, ..., Ps (cf. (16)) are
positive on /, it follows that the same occurs for the U;; foralli=1,...,10and s = 1,2, 3.

One sets
(38) (&) =(1,-1,1,-1,1,1,-1,1,-1,1).

Proposition 3.4. The following differential relation is identically satisfied on U:

10
(HLOGy,) > aU;(Q)=0.
i=1

Consequently, the 10-tuple (&U;(Q) )1-131 can be seen as a 2-abelian relation for ng” again
denoted by HLOGys.

Proof. By formal elementary computations, one can express the scalar components of the sum
0 = }31 € U (Q) in the basis dy; A dy; with i, j such that 1 < i < j < 5. For instance,
the dy; A dy,-component @y = (d,, A 0y,) 10 is a sum of terms of the form R(y)In M with
R(y) € C(y) and where M is a monomial in the &’s defined in (I7). Since these quantities are
positive on [, using the functional equation of the logarithm, one can express @, as a linear
combination in the In g;’s with coefficients in C(y). Straigtforward formal computations give that
all these coefficients actually vanish, hence ®1, = 0 on /. Proceeding similarly for all the other
components of ®, one gets that it vanishes identically on / hence on the complex domain U. O

From the presence of logarithms in the definition of €, it follows that HLOGy, is not a global
AR for W%M but a multivalued one, with additive monodromy. Hence one has to be a bit care-
ful when wondering about the invariance property of ‘the abelian relation” HLOGy, under the
birational action of Wp, on Y5. There are two approaches for circumventing this non important
technical issue.

~GM —*
The first one is to restrict to the reals and to deal with the real web Wy, on Y5 = R’ \ Z. One
considers the following real-analytic version of Q:

dur Nd du; Nd du; Nd
Qw:1n|u,|(u)_m|u2|(u)+m|u3|(u)
Uou3 Ujus ujuz
In|1+x—y| In|y]| In| x|
= + — dx ANdy.
( xy M+x—y yl+x—yp)" Y

The scalar components of Z}fl U;(Q) are linear combinations of the quantities In|{i|’s with
coefficients in R(y) which can easily be computed. One obtains the

Proposition 3.5. The following differential relation
10

(HLOGY) Y eaui(e)=0
i=1

10
is identically satisfied on Y5 hence (e,- UEK(Q‘”))i:l, which will be again denoted by HLOG“’S, can

—GM
be considered as a global real-analytic 2-AR either for W%M or for its real version Wy, .
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Since it is global, it now does make sense to consider the invariance properties of HLOG‘}‘,’5

with respect to the action of Wp, =~ #p, on Y5 or on ?5. But this is also possible when sticking
to the holomorphic setting, following a similar approach to the one described in [Pi3, p.96].
Indeed, as it follows from the description of the ARs of ngi” (see further), the local system
AR? = ﬂ‘Rz(W(;SM ) of 2-ARs of Wg;” (on Y3) admits a 1-step ‘weight filtration’ F * AR?, with
F'AR? = AR? and where FOAR? = AR12e m(W(;SM ) is the vector space of rational ARs of W(;SM .
Then Gr' AR? is of dimension 1 and the multivalued abelian relation HLOGy, gives rise to a

generator of this space. It is easy to see that the birational action of Wp, on Y5 induces a linear
action on the associated graded space

Gr* AR’ = ARy, (W§M) & Gr' AR® .
Let us now discuss how the Cremona transformations o-; acts on HLOGy;

Proposition 3.6. 1. As elements of ARZ(W%‘/[ ), one has o;(HLOGy,) = —~HLOGY, for any i =

1,...,5. Hence HLOG‘}‘,’5 spans a 1-dimensional non-trivial Wp,-subrepresentation of ARZ(W%” )
which necessarily is the signature representation.

2. There is a similar statement for the linear action of Wp, on Gr* AR?: the complex line Gr' AR?
spanned by HLOGy, is Wp,-stable and is the signature representation.

Proof. Fori =1,...,5, one sets HLOG?, = (U;1) (Q”) and HLOGY_ = (U;2)"(Q“). Then by
direct elementary computations, using the explicit expressions of the o;’s given above, one easily
establish the following transformation formulas:

e forke{1,2,3,4},one sets vy = (k,k+ 1) € S5. Thenfori=1,...,5 and € = +, one has:
39) a‘,ﬁ(HLOGZ’E) = -HLOG®

vi(i)€ *
e let vs be the transposition exchanging 4 and 5 (i.e.vs = v4). Then for j € {1,2,3},
€ € {4,5} and € = %, one has:

(40) Ug(HLOG;ij) = —HLOG;f”6 and os(HLOGY,) = -HLOG, ,, _,

It follows that (HLOG“;S) is Wp,-stable. Since this 1-dimensional representation is not trivial, it
has to be the signature.

The proof of the second point of the proposition is essentially similar. m|

Remark 3.7. The components of HLOGy, are linear combinations of logarithms of rational
functions, multiplied by wedge products of total derivatives of terms of the same type. Such
differential forms have already appeared in earlier works on polylogarithms and the functional
equations they satisfy. For instance, see our previous work [Pi3|] on the curvilinear webs defined
by the n + 3 forgetful maps on the moduli spaces Mo 43 (in particular, refer to formulas (5.61)
and (5.65) therein). See also [KLLE where polylogarithms are studied from the perspective of
the theory of algebraic cycles and reciprocity laws.

It would be of interest to gain a deeper understanding of the nature of such differential forms
and to clarify why they naturally emerge in the context of functional identities and abelian rela-
tions.

9More precisely, see the first line of page 157 in [KLL]
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3.2. The rational 2-abelian relations of WGM In this subsection, we give an explicit de-

scription of 10 linearly independent rational 2 abehan relations of WGM which are obtained
as residues of HLOGy,. Then considering Proposition 3.3] it will follow that together with
HLOGey,, these 10 rational ARs form a basis of ARZ(W%‘/[ )-

3.2.1. Residues of HLOGy,. Recall that C(y) stands for the field of rational functions in the
variables y; fori = 1,...,5, with y; = y13, Y2 = V14, ¥3 = Y24, Y4 = Y25 and ys5 = y35. Given
F, an irreducible non-constant polynomial in the y;’s, we denote by vy the associated valuation
C») \ {0} — Z. Then for V|, V;, V3 € C(y), we set

RCSF( In (Vl)dV2 A dV3) =ve(V1)dVy AdV3 € Q‘C(y) s

and we claim that this definition makes sense, that is that the RHS is independent of the determina-
tion of In (V1) taken in the LHS (its is an easy exercice, left to the reader). We call vg(V1) dVoAdV;
the residue of the logarithmic 2-form In (V) dV, A dV3 along the hypersurface cut out by F

We aim to take residues of (the components of) HLOGy with respect to the 10 irreducible
components of the divisor Z C Y5 defined in (I8). For any i = 1,..., 10, one denotes by HLOG;
the i-th component of HLOGy,, namely
(41)

dU;» A dU; dU;1 N dU; dU;1 AN dU;
HLOG, = & U/(Q) = & (an,-,l(#)—ln . (;) In (;))

UipUis Ui1U;s Ui1Ui»

From the topological definition of the residue (cf. the footnote below), it follows that for any
non-constant irreducible polynomial F, the 10-tuple of residues

10
(42) Res;(HLOGy;) = (Ress(HLOG;) ),-=1
with

dU',z/\dU'ﬁ dU"l /\dU',3 dU',l /\dU"z
Res;(HLOG;) = vF(U,-,l)(;) - F(Uiz)(%) + F(Ui,g)(;)

UiaUis UiaUis UiaUi
for any i, belongs to AR m(WGM ). Specializing F by taking for it one of the ten polynomials
defined in (I7)), one gets 10 rational abelian relations

Res; = Res;, = Res;(HLOGy,), i=1,...,10

which can be easily computed from the explicit expressions (31)) and (33) for the U; ;. For in-
stance, one gets that Res,, = Res,, (HLOGry;) corresponds to the following differential relation

43) U;((dm A duy )_ (du3 A duy ) B (dm A duy )) ‘U (du3 A dul)

urus usuq uiuy usuq
dus A du; dus A duy dur A du
rUp(H2E 4 gy (FR ) (2228
usug usui usus

which can be directly verified to be identically satisfied.

By straightforward computations, it can be verified that one has p?(‘Ws) < 1 for any 5-subweb
W5 of ‘W%M . By analogy with the terminology introduced in [Dal], any 2-abelian relation of

20The residue Resp( In(Vy)dVond V3) can also be defined topologically, in terms of the monodromy of In (V) dV, A
dV; along a small loop around { F' = 0}, see [PiS, §2.2.6] for more details on this approach.
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such a 5-subweb ‘W5 will be said to be ‘combinatorial’ and we will denote the space spanned by
the combinatorial ARs by AR¢ (‘W' gSM ). From above, it follows that Res,, is combinatorial.

By straightforward computations, one makes the 10 residues Res; entirely explicit from which
one first deduces that all these ARs are combinatorial and rational. Using the explicit formulas
obtained for the residues Res; together with the ones for the automorphisms of webs o’s given
in (28)), it is straightforward (however a bit laborious) to compute all the pull-backs o, (Res;)
fork=1,...,5and i = 1,...,10. One obtains that any a‘Z(Res,-) is a linear combination (with
non-zero coefficients £1) of the ten residues of HLOGy;. For instance, one has

* —_—
crl(Resyl) = —Res,, + Res,, + Res,; + Resp, + Resp,

More generally, by means of straightforward explicit computations, we get the

Proposition 3.8. 1. The residues Res;(HLOGy,) (i = 1,...,10) all have exactly 5 non-trivial
components hence belong to AR%(W%M). Moreover, they form a basis of this space, which

coincides with the space AR12e m(W?SM ) of rational ARs of W?fl .

2. The birational maps o’s induce linear automorphisms of AR%(‘W?SM ) making of this space a
Wp,-representation. As such, it is irreducible and isomorphic to V[llo1 iy

Proof. The proof goes by explicit computations Since all the residues Res;’s have five non-
zero terms which are rational, they are combinatorial 2-abelian relations which span a subspace
of AR(W?ﬁVI ) in direct sum with the line spanned by HLOGy,. The Res;’s being linearly
independent, it follows from Proposition 3.3 that ARC(’W%M ) has dimension 10 and admits

R = (Res‘v)ig 1 as a basis. This proves the first point of the proposition.

Computing all the pull-backs o (Res;), one first obtains that they all have exactly five non-zero
terms hence are combinatorial 2-abelian relations hence are linear combinations of the Res;’s. It
is then straightforward to get the explicit forms for the matrices of the o € GL(AR%(‘W%M )
expressed in the basis R. For instance, one gets that

ro o o 1 0 0 0 0 0 0]
-1 0 -1 0 0 0 O O 0 O
o -1 0 -1 0 0 0 0 0 O
!l 0 0 0 0o O O o0 0 O
s 1 0 0 1 -1 0 0 O O O
Matw(@1)=1| o o o 0 0 -1 0 0 0 o
o 0 o0 1 0o O O 0 0 -1
1 0 0 1 0 O O -1 0 O
o o0 o0 o o0 O o0 o0 -1 o0
(1 0 0 o0 o0 0 -1 0 0 O

Knowing explicitly the matrices Matyg(o*) for k = 1,...,5 and proceeding completely simi-

larly as in the Appendix of [Pi4], one computes the character of the representation of Wp, on
AR%(‘VV%M ): one get that this character is

x =1(10,-2,2,-4,2,0,-2,2,-2,0,1,-1,1,-1,1,0,0,0) .

21 Another less computational proof could have be given, using the action of W, =~ %/, on the set of combinatorial
abelian relations.
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It corresponds to the first line of the characters table of the Weyl group of type Ds given in [Pi4,
Table 4], which gives us the second point of the proposition. |

Remark 3.9. In [Pi5, §4.2], it has been established that one also has
HLogAR2, =~ V!0

asym = V(12,13

as Wp-representations, where the left hand side HLogARgsym stands for the space of symbolic
antisymmetric weight 2 AR of a del Pezzo web ‘W ap, of a quartic del Pezzo surface dP4. As it will
be explained further, this is no mere coincidence.

From the results above completed by some computational checks, we deduce the following

Corollary 3.10. 1. One has p*(‘Ws) < 1 for any 5-subweb “W's of W?fl . Those for which
the virtual 2-rank is 1 actually are of maximal 2-rank 1. These subwebs are exactly the W< =
’W(Tq,...,?";s), for all 5-tuples € = (cs,-)l.5:1 € {1} of even parity (i.e. such that € --- €5 = +1).

For each even e, the space of 2-ARs of ‘WE is spanned by a peculiar abelian relation ARS,
uniquely defined up to sign, whose components with respect to each first integral U; = (U J',S)§=1
of ‘WE is a linear combination, with coefficients +1, of the rational 2-forms

de,a A de,b

dLogU;, NdLogU ;) =
gUja g U}, UsaUps

(I<a<b<3).
Moreover, AR%(W%’I) = (AR5| € € {1} is even ) coincides with the space ARim(‘WgSM)
of rational 2-ARs of ’WgM and this space is 10-dimensional: dim AR%(‘W?M ) = 10.
5 5

2. One has

(44) AR (WM) = ARE(WSY) o (HLOGy, ).

Jfrom which it follows that the 2-rank of ’W%M is 11, that is is AMP.

3. By residuesimonodromy, the abelian relation HLOGy, spans the subspace AR%(‘W(JSM ) of

combinatorial ARs, which coincides with that of rational 2-ARs of W?fl : one has
Res(HLOGy;) = AR:(WY!) = AR, (WFY).

4. The decomposition in direct sum {@4) actually is the decomposition of ARZ(‘W%M ) into irre-
ducible Wp,-representations. The two pieces AR%(’W%’I ) and (HLOGry, ) are isomorphic to

VIO

(L111] and to the signature representation respectively.

3.2.2. A specific combinatorial 2-abelian relation of ‘W;;M . For what is to come further, it
5
is interesting to consider the case of the 5-subweb W(Uy,..., Us) of ’WgSM . This web will be

denoted by Wg?“ and is defined by simple monomial first integrals:

1 yigyss L yiayss
Wg:‘“ = W((yzs , yz4y35), (— —) (y24, Y14y2s ) (— T ) (y14, y13yz4) ‘
yizo Y13 Y35 Y35
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According to the fourth point of the above corollary, this web has maximal 2-rank (equal to 1).
We aim below to describe very explicitly a generator of the complex line ARz(Wg;V“).

Setting

d d dxNd
(45) 77=dL0gx/\dLogy:—x/\—y: *Ady
X y Xy

one verifies without any difficulty that the following proposition is satisfied: Recall (from (38))
thatonehase; =3 =es=1land e = ¢4 = —1.

’

Proposition 3.11. 1. The 5-tuple AR? = (& U; (1))

2
C

5
_ sa rational 2-abelian relation for W+5,
=

of rational 2-forms on C>, one has

5 5
dxANd dU; 1 AdU;
o [£4) 31 s,
pr xy — UiaUip

i.e. in the space Q)

Moreover; in terms of the residues of HLOGy;, one has AR,27 = ?: | Resp,.

2. Consequently, one has ARZ(W;;S) = (AR% ).

Since (dxAdy)/(xy) is closed, all the components U ((dx Ady)/(xy)) of AR,2] are closed as well
hence by Poincaré’s lemma, the latter abelian relation admits a primitive, at least locally. Since
ARC(‘W%M ) is irreducible as a Wp,-representation, this space is spanned by the orbit Wp, - AR,27
which is formed of closed 2-abelian relations. It follows that all the residues Res; are closed (a
fact which can also be verified directly) hence locally exact.

We will use this to construct specific primitives of the residues Res; which will span an inter-
esting subspace of AR 1(W§§W ) (see (9) in Theorem [3.14] below).

3.2.3. A more intrinsic and abstract approach. All the results of the previous subsection have
been obtained by direct computations. Here we say a few words about a more abstract approach
to the 2-ARs of ‘W gfi” , one of the key ingredient of which being the action of Wp, on Y.

Up to the birational identification ®, the divisors {{; = 0} in Y5 correspond to 10 of the
weight divisors Dy, in Y5 hence to some weights and lines in W* and L, respectively (see the

discussion following (13))). These correspondences are given in the table below, where we use the

following notations: we denote by (%)5 = %, %, %, %, %) the dominant weight of W*. As elements

of Picz(dP4), we set e,y = ZZ:l e, and e; = e,y — €; = )14 €x for i € [[5]]. Finally, we denote by
(vk)zz1 the standard basis of R>, that is v; = (6,-j)§:1 fori=1,...,5.

Line ¢ Weight w, Polynomial ¢

e Vi — (%)5 P;

5
h-ei—ej|(3) —vi—v, Yij
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Similarly, the correspondances between the W-relevant facets of the weight polytope, the cor-
responding conic classes and the first integrals of ‘W gM are given in the second table just below

index i Facet | Conic class | First integral
iefl,...,5} Al 2h —e; Ui
iei6,...,10} Agi h —e; Uiss

The variable {; = y; = y;3 corresponds to the divisor associated to the line £ = h — e; — e3.
The conic classes adjacent to it are h — e, h — e3 and the three classes 2h — e;for k=2,4,5. The
two former classes correspond to the foliations induced by Ug and Usg, the three latter to the ones
with U, U4 and Us as first integrals. This is in accordance with the explicit expression (43)) for
the residue of HLOGy, along the divisor cut out by y; = 0. In terms of Gelfand-MacPherson’s
web on Y, this translates as the fact that

(46)

‘the residue of HLOGy, along the weight divisor associated to we = (- é é, —% % %) is
the subweb defined by the face maps iy : Y5 — Y for all facets F of As adjacent to wg’.

Foraline l € L, let ’W%’I ; be the subweb of ‘W%’I defined by the face maps np : Y5 — Yp
for all facets F' C As adjacent to I. More formally, setting F(I) for the subset of conic classes
¢ € K such that ¢ — £ € L, one has

WY, = (W(7TF‘|C € 7((1)).

considered in the previous subsection coincides with WG

For instance, the web WG?/I *

5.2h—eo"
Proposition 3.12. 1. The sixteen 5-subwebs of ’WSI:I with maximal 2-rank (equal to 1) are

precisely the subwebs WGM s for all lines € € L.

2. Moreover, for any line £, the residue Res¢(HLOGy,) of HLOGy, along the divisor Dy,
denoted by Resy, is a non-trivial AR for WGM In other terms, one has ( Resg ) = ARz(‘W%’{ f).

3. For any € € L, the following linear relation holds true in AR? (WG M.
(Rely) Res; = Z Res._; .
ccK(6)

Moreover, for any exceptional collectiofd & c L, the set {Rel; },s is a basis of the space of
linear relations between the 16 residues of HLOGy;.

4. For any exceptional collection & C L, there exists a unique line lg € L which intersects all
the elements of &E. Setting & = & U {{g}, then the ten abelian relations Resy for € € L\ &, form a
basis of the space of combinatorial 2-ARs of WGM , Le. there is an isomorphism

AR2 WGM @ C - Res;.
teL\E

22We recall the notation for the W-relevant facets of As: one has Agi =Ap, N{x;=¢€/2}forie[[5] and € = +1.
2 An ‘exceptional collection’ is a subset of L formed by five pairwise disjoint lines.
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Proof. This follows from explicit computations and from (6)) combined with the facts that Wp, =
Aut(Y’s) acts as the signature on the complex line spanned by HLOGy; (cf. Proposition [3.6) and
acts transitively on the set of weight divisors in Y5 as well as on the set of exceptional collections
& c L (see [Ma, Corollary 26.8]). a

3.3. The 1-abelian relations of ’WgM . We consider the following privileged primitive of the
5
2-form n = dLog(x) A dLog(y) :

1 1 d dx
@) 6= 3(Log) dLog®) - Log(y) dLog() ) = 5( Log(x) T Logt) )
Via elementary computations, one gets
dyss
2U5(0) = 111()’25)—4 —In(y> )’35)— +1In(y25) — e

d
203(6) = In ()’14)’35) ayiz ~1n () )’14_1 (yl) dyss
)’13 Y13

2U5(6) = In ()’24) —4 —In ()’14)’25) =2 L n(y 24) y25

d
2UL6) = — ln(y35) 3 In(yss) dys (y13y25) y3s
Y13 25 Y35 Y35

. d
and 2U%(0)=1In (y14) — —In (y13y24) =2 Gy )ﬂ
Y13 Y14

Recall that €y = €3 = 65 = 1 and ¢ = ¢ = —1 (see (38)). The coefficient of the logarithmic
differential dy,4/y»4 in the sum 3> i1 € U7 (0) is the sum of those of the terms U} (6) fork = 1, 3,5,
namely it is

In (v25) + (= In (V1425) ) +In (1),

a quantity which vanishes identically on any complex domain in Y5 containing (R>0)5. The same
phenomenon occurs for all the logarithmic differential dy;/y; withi = 1,...,5, which proves the

Proposition 3.13. Withe = &3 = €5 = 1 and e = ¢4 = —1, one has identically

5

5
(48) D &U;(6) = %Ze,- U;k(Log(x)%—Log(y) d—;): 0
i=1

i=1

5
hence AR} = (ei U;‘((S))i is a I-AR of weight 1 for Wy,_. Moreover, one has d' (AR}) = AR2

For any £ € L, the 2-abelian relation ARy is exact and is the total derivative of an 1-abelian
relation AR; of weight 1, which is equivalent to @8). We denote by ARlc(WgISW ) (or just ARlc

for short) the subspace of Wl( RZ((VVGM )) spanned by these ARs, a notation which is justified
by the fact that d' sends ARlc(‘WG M) onto AR? (WG M) a fact which in particular implies that

dim ARlc > 10. From ry (‘Wgﬁ” ) = 35 and essentially using explicit computations, one gets the

following result which gives a quite detailed description of the structure of the space of 1-abelian
relations of W?/:I .
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Theorem 3.14. 1. One has r'(‘Ws) < 6 for any 5-subweb “W's of ’Wgﬁ” . Those for which the
I-rank is 6 are the subwebs W< = W(F ", ... ,?'555)f0r any 5-tuple € = (E,-)l.sz1 e {+1p.

2. When € is odd, the space of 1-abelian relations of W< has a basis formed of ARs corresponding
to identities of the form ) icje 23 cisdLogU;s = 0 for some coefficients c¢;; € {-1,0,1}. In

s=1

particular, the 1-ARs of this web all are of weight 0:
AR'(W9) = Wo(AR'(W9)).
3. When € is even, the situation is different since not all the ARs of ‘W< are of weight 0. Indeed:

e the space 1-abelian relations of W< of weight 0 is of dimension 5 and has a basis formed
of ARs of the same form as in 2;

o but there exists an 1-AR of weight 1, denoted by ARi whose each component is a linear
combination with coefficients in {0, £1} of the 1-forms with logarithmic coefficients

1
E(Log UjadLogUj,—LogU,j,dLog Uj,a) (1<a<b<3).
and which is such that dARé = Res..

4. The space of 1-abelian relations of weight 0 of ’Wgﬁ” is of dimension 20 and has a basis of
ARs as in 2, that is which correspond to identities of the form Y, 1'131 Zzz | Ci,sdLogU; s = 0 for some
coefficients c; s € {—1,0, 1}. Moreover, one has WO(ARl(Wg,;?/[)) = AR}W(W%’I) and this space
is a subspace of the space Ker(d") of closed 1-ARs of ‘W gﬁ” .

5. The I-ARs ARé for € even span a space of dimension 10 on which the restriction of the

derivative (3) induces an isomorphism onto AR%(’W%M ) setting
(49) AR( = ARL(WPM) = (AR | € € (1}’ iseven ),
this isomorphism is given by d' ARlc(’Wgéw) — AR%(‘W%M), ARé — Resk.

6. For any i, j,k such that 1 <i < j < k <5, the 6-subweb W ji; j-+ of ’W%M defined by the
first integrals Uy for | € {i, jk,i + 5, + 5,k + 5} carries a complete and irreducible 1-AR of
weight 1, denoted by ARl.1 ik (uniquely defined up to sign), the I-th component of which is a linear
combination, with coefficients in {—1,0, +1}, of the exact I-forms

d(Log U Log Uyp) = Log UyqdLog Uy + LogUppdLog Uy (1<a<b<3).

The ten I-abelian relations ARl.ljk span a subspace of W} (ARlc(‘ng’I )) N Im(d°) of dimension 5,

which will be denoted by AR, (WSM) or just ARy, for short.

7. There is a decomposition in direct sum:

wi(AR' (W)

20

(50) AR'(WPM) = Wo(AR' (W) @ ARY,, (WY )5 ® ARL(WFY )]0 .

Im(do) = Ker(dl)
where the upper exponents in red stand for the corresponding dimensions. It follows that the
I-rank of WM is 35.
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8. The decomposition in direct sum (3Q) actually is the decomposition of ARl(’WgSM ) into irre-
ducible Wp,-representations, with the following isomorphisms:

1 20 1 5 1 2 10
(51) Wo(AR') = V7)), AR, ~V] 5, and ARL=AR:=V} .

Proof. The proof essentially goes by explicit computations that we do not reproduce here

For the eighth point, we proceeded as follows: thanks to the explicit expressions ([27) and (28)
for the generators o; of WD; (see (30)), and working with an arbitrary but fixed basis of any one
of the spaces Wo(AR'), AR! Sym OF ARlc, noted here by §, there is no difficulty first to verify that
the pull-back maps o; give rise to automorphisms of S, second to get explicit matrices of these
automorphisms with respect to the chosen basis. Then proceeding as in the Appendix of [Pi4l],
there is no difficulty to compute the character of the representation Wp, =~ #p, — GL(S). For

instance, one obtains that the character of the action of Wp, on WO(ARl(‘WgSM )) is
Xwoarh = (20,-4,4,2,-2,2,-2,0,0,0,-1,1,-1,-1,1,0,0,0) .

Looking at the character table of Wp, (cf. Table 4 in [Pi4] for instance), the first isomorphism in
(31D follows. The two other cases are handled in the same way. m|

3.4. The 0-abelian relations of WGM One has ro(WG ) = 25 and because the differential d°

induces an isomorphism AR" = ARO(WGM ) =~ Im(d’) = Wo(AR') ® AR!
AR essentially has already been given in the previous subsection.

S ym> the structure of

For i € [[S]], one sets i* = i+ 5 € {6,...,10} and [,m,n € [[10] pairwise distinct, one
denotes by “Wj,,, the 3-subweb of ’WgSM defined by the first integrals U;, Uy, and U,: W, =
WU, Uy, U,). By direct explicit computations, we get the following result which just adds a
few details to what can be deduced from Theorem [3.141

Proposition 3.15. 1. One has a direct sum
AR(WEM) = wi(AR?)” @ Wo(AR®)
with the differential d° inducing isomorphisms of Wp-representations
Wi(AR) = Wo(AR") = V), and  WH(AR®) = ARy, =V .
2. The 3-subwebs of ‘W%M have O-rank less than or equal to 1. Those with rank 1 are the 3-

subwebs Wi, Wijs, Wi, Wi i, and are therefore 80 in number. Their 0-ARs all have
weight 1 and they span the whole space W1(ARP) which is of dimension 20.

3. Forany i, jk such that 1 <i< j< k<S5, the I-AR AR1 ik of the 6-subweb W j; ji+ of W?fl
is exact, and is the derivative of a 0-AR denoted by ARojk, which corresponds to the (unique up
to sign) functional identity of the form ;3\ 1<a<b<3 c Log Uia Log Uip = 0 where the first sum
is for l ranging in {i, j, k, 1", j*, k*}, and where all the coeﬁ‘iczents cl belong to{-1,0,1}.

The ten 0-abelian relations AR?jk span the whole space Wo(AR®) of O-abelian relations of
weight 2 of ‘W%M , which is of dimension 5. Moreover, the space Res(W>(AR®)) spanned by the

24Short Maple worksheets are available from the author upon request.
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residues of the weight 2 abelian relations AR?jk coincides with W1(AR®). One has:

)| O he 10 >:W1(ARO)‘

l1<i<j<k<s5

Res(W,(AR")) = <Resév,(ARlljk

All the 0-ARs of ’Wgﬁ” can be made explicit. For instance, the following weight 2 functional
identity

(ln(g—:)ln(Um)) +(11’1(U2,1U2,2) 1n(U2,3)) + (11’1(%)111((]33))

Usg.1 U,
(ln( )111(U6 3)) (11’1(U7,1U7,2) ln(U7,3)) + (ln(ﬂ)ln(U“)) =0
Us,2 Us,
corresponds to the weight 2 abelian relation AR(I)23 of the web ‘W3 = W(U,, Uy, Us, Ug, U7, Ug).

3.5. The various links between the spaces of ARs of WGM summarized in a table. We find

interesting/enlightening as well as convenient to gather all our findings about the abelian relations
of W GSM in Table 2 below. In it:

— the columns are labelled by the weight of the ARs, the lines by their degree;

— the diagonal black arrows are isomorphisms of Wp;-representations induced by the dif-
ferentials d* : AR* — AR (with k = 0, 1);

— a dashed red arrow T <-- S means that the whole target space T is spanned by the residues
of the elements of the source space S;

— the upper exponents in red stand for the dimension of each space;

— HLOG stands for the complex line spanned by the ‘master 2-abelian relation” HLOGy;.

w=0 w=1 w=2
AR® /{Wl(ARO)ZQ ----- - Wo(AR®Y
AR! Wo(ARY" | AR." e ARéjm
AR? ARZY focsecpoces HLOG'

TasLE 1. The subspaces of the space of abelian relations of ’W(IZVI and the many
relations between them.

It may be useful to gather the structures as W(Ds)-representations of the subspaces appearing
in this table as well. This is given in the following Table 2.
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w=0 w=1 w=2

0 20 5
AR / Vizon /V[-,221]
AR! Y20 '/ 10 5 ’/

V eV
[2.21] o [m] 7 [=21]

yA / 1

[11,111] V[-,11111]

AR?

TaBLE 2. The subspaces of AR(‘W%M ) as Wp,-representations.

4. A cluster view on ‘WSG M
5

A particularly interesting feature of Abel’s identity of the dilogarithm is that it has a ‘cluster
nature’, in the sense that it can be written in an equivalent nice form in terms of some cluster
variables (see [Pi2] for details). Indeed, if X, (with £ € Z/5Z) stands for the 2 -cluster variables
of type A, characterized by the 5-cyclic recurrence relations X,_X,41 = 1 + X, for any ¢, then

setting X; = u; and X, = uy, one has X3 = 1:‘2, Xy = %, X5 = 1;;“ and X,,5 = X, for every

¢ € Z8 Moreover it is well-known that (ADb) is equivalent to the following functional identity
5 71'2

52 R(X,) = —

(52) ; (Xe) >

which is satisfied for all X, X, > 0 by the ‘cluster dilogarithm’ R In addition to furnishing a
very nice formal way to write this identity, the cluster perspective on it offers a more conceptual
way to interpret it, since (32) (hence Abel’s identity (Ab)) can be seen as the manifestation of
a certain property of an important object associated to the 2 -cluster algebra of type A,, namely
the associated scattering diagram SCy,. Then that (52) holds true follows from the fact that this
scattering diagram is ‘consistent’ (see [Na2, Theorem 3.6]).

If one believes that HLOG s is a natural generalization of the five terms identity of the diloga-
rithm, it is natural to wonder whether the former differential identity may be explained in terms of
a certain property of a putative scattering diagram SCy, or not. Moreover, because HLOGy is
given by the vanishing of a sum with finitely many terms, a naive expectation would be that SCy,
be of finite type. Thus if one is fool and dreamy enough to want explain HLOGy, by means of
a scattering diagram, a first step would be to find a cluster-like structure associated to the spinor
10-fold Ss, which firstly is of finite type and secondly, is well suited to the web (VVY(:M under

251t seems that, in a slightly different form, the cyclic recurrence of the X,’s was already known to Gauss, see here.
20This is the function defined by R(u) = % fou (In(1 + 6)/t =In(®)/(1 + t) )dt for any u > 0 (see [Pi2, §2.2.2.1]). In
terms of the classical bilogarithm, it is expressed as R(u) = —Liy(—u) — %Log(u)Log(l + u) for any u € R..


https://www.math.uni-bielefeld.de/~sek/cluster/pentagramma/
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consideration. There are many works on some cluster structures on some pieces (more precisely,
some open domains of some peculiar subvarieties) of generalized flag manifolds, but except in
very few known cases, these cluster structures are not of finite type. For the case under considera-
tion, we are not aware of any classical cluster structure on (some dense open-subset of) Ss which
is of finite type, which may temper our dream of explaining HLOG y, via a finite scattering dia-
gram. However, some recent works by Ducat and Daisey-Ducat suggest that allowing to consider
more general cluster-like structures than the classical ones might be the suitable path to reach our
goal.

In [Dul], for the case of G5 = Ss, and in [DD] for the case of the Cayley plane G4 = OP?, Ducat
then Ducat together with Daisey describe a cluster-like structure of finite type on the coordinate
ring R, of a certain Zariski open domain in G, for r = 5,6. These cluster-like structures are
known as LPA{?], a generalization of the classical notion of cluster algebra introduced by Lam
and Pylyavskyy in [LP]. As the name suggests, the main feature of such an algebra is that any
‘cluster’ variable obtained by means of a finite sequence of ‘generalized mutations’ from the
initial cluster variables is a Laurent polynomial in the latter. For = 4, one has G4 = G»(C>) and
this grassmannian carries a classical .o/ -cluster structure of finite type A, which, after quotienting
by the action of the rank 4 Cartan torus Hy of SLs(C), gives rise to the 2 -cluster structure of
type Ay on Y, = G,//Hs = Go(C°)* //Hs = Mo3s.

In [Dul], Ducat endows the coordinate ring of the complement S¢ of a divisor in the spinor 10-
fold with the structure of a finite LPA. Unfortunately, the theory of LPAs has not been developed
that much so far. The notion of mutation for these algebras is a generalization of the binomial
<7 -mutation of the classical theory of cluster algebras but as of the time of writing, an equivalent
notion for LPAs of that of 2 -mutation has not be worked out yet. For that reason, we do not have
a cluster description of Gelfand-MacPherson web on Y5 as nice as the one of ’Wgﬁ” in terms of
the 2 -cluster variable of type A,, which can be written in a concise mathematical form as

1+ L+u + 1+
WY = ZW,, = WX, = (W(u1 e Trwrw 1w )

ui | uyuz | u

Because ther is no generalization to the case of LPAs of the notion of X-mutation of the clas-
sical theory of cluster algebras yet, we are going to deal with Gelfand-MacPherson’s web of the
spinor tenfold Ss instead. In short, we prove that ’Wg 3’[ is cluster with respect to the finite LPA
structure on S5 constructed by Ducat in [Dul]. ‘

Proposition 4.1. 1. Wick’s parametrization (10) of Ss is cluster, i.e. the Wick coordinates x;j o
Wl:Ss~ Asyms(C) --» C (for i, j such that 1 <i < j <5) naturally identify with some of the
cluster variables of Ducat’s LPA of Ss.

2. The ten face maps Ilg : S5 --> Sa f are cluster in the sense that their components, when written
in the initial cluster variables at the source and some Wick’s coordinates at the target, are cluster
variables, possibly up to sign and up to multiplication by a monomial in the frozen variables.

In the lines below, we explain how we proceeded to get this result.

2TLPA is the acronym for ‘Laurent Phenomenon Algebra’.
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4.1. Ducat’s LPA on Ss. Ducat’s LPA on As has rank 3 and 18 cluster variables in total, among
which 8 are frozen. These latter are denoted by aj,...,ag. Denoting by xi, xp, x3 the initial
unfrozen cluster variables, all the other ones can be obtained using the following SageMath script
written by Daisey and which can be run online at his webpage:

sage: var("x1,x2,x3")
sage: coeffs = [var("a%d" %i) for i in range(l, 9)] # coefficients

sage: F1 = a5*x2 + a8*x3 + a2*a3
sage: F2 = a6*x1*x3 + a3*a4*xl + a8%al*x3 + al®a2*a3
sage: F3 = a4*x1 + a7*x2 + al*a2

sage: S = LPASeed({x1:F1, x2: F2, x3:F3})
sage: show(S.variable_class())

In addition to the three initial cluster variables xi, x», x3, the other unfrozen cluster variables
are the following:

arasz + asxpy +agxy ajaraz + ajagxs + azasx) + agx1x3 ajaz +aqsx; +arxp

> > ’

X1 X2 X3
ajarasz + ajasxy + ajagxs + azasxy + agxX1x3 ajazaz + ajagxz + azasx; + azarxpy + agx1Xx3

> ’

X1X2 X2X3
ala%a3 + ayjazasxy; + ayjazagxs + araszasx; + aaszayxy + asasxyxy + a5a7x§ + azagxy x3

’

X3X1
a1a§a3 + ajarasxy; + ajaragxs + aaszaqsx) + aazayxy + aagXx1x3 + asasxixp + a5a7x§ + azagxrx3

X1X2X3

These cluster variables are Laurent polynomials in the initial unfrozen cluster variables x, x,
and x3, with coefficients in the monoid Nyy[ai, ..., ag]. The non initial unfrozen cluster variables
are characterized by their denominators which are monomials in the x;’s. Hence one can denote
these cluster variables by X;, X;; and Xjo3 for 7, j € {1,2, 3} distinct, where X; (resp. X;; or X123)
stands for the cluster variables with monomial denominator x; (resp. x;X; or x;x2x3), that is:

aras + asxy + agxs ajazasz + -+ + agXxXjx;3 aj dzzaj + -+ azagxrx;

X €} yeoe s X123 =
X1 X2 X1X2X3

4.2. The initial cluster on S5 and Wick’s coordinates. The initial cluster of Ducat’s LPA struc-
ture on (the affine cone S5 over) S5 is formed by the triple (x;, x», x3) together with the frozen
variables ay, ..., ag. These cluster variables are the restrictions to §5 of some of the weight coor-
dinates on the spinor representation S . So each of the initial cluster coordinates is associated to a
well-defined weight of the spinor representation. The same holds for the Wick coordinates we use
here for parametrizing birationnally Ss and it is by comparing the weights of all these coordinates
that we are going to make explicit the way they are related.

In [DDJ], it is by means of a figure (namely Figure 3.(a)) that is indicated what are the weights
of the 16 coordinates x;,a; for i = 1,...,8 considered by Ducat. For the Wick coordinates,
the analogous correspondence is given in [PiS, Table 4.1]. Since [DD, Figure 3.(a)] pictures the
images of the weights by ‘the’ Coxeter projection, it suffices to have an explicit expression for the
latter in order to get how Ducat’s cluster coordinates and Wick’s ones are related. This is what we
do below.


https://oliverdaisey.github.io/code/
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Recall that a useful description of the weights of S is in terms of the sixteen lines of an
arbitrary (but fixed) smooth del Pezzo surface dP,4 described as the blow-up of the projective plane
in five points. Then Picz(dP,) is freely generated by the classes ey, .. ., es5 of the five exceptional
divisors of the blow up plus the class & of the preimage under the blow-up map of a generic line in
P2. With these notations, we use the following labels for (the classes of) the lines £; (i = 1,.. ., 16)
of the considered del Pezzo surface:

16
([i)l.zl =(e1,e2,e3,e4,e5,h—el—ez,h—el—e3,h—e1—e4,

h—e —es,h—e;—e3,h—e;—e4, h—er—es5,
h—e3—e4,h—e3—e5,h—e4—e5,2h—e1—e2—e3—e4—e5).

The canonical class is k = =3k + Z?: , € and as a basis for its orthogonal x*, we take the one
formed by the following classes:

1 1 1
fi= §(h+e1—e2—e3—e4—e5) fo= §(h—e1+e2—e3—e4—e5) f3:§(h—e1—e2+e3—e4—e5)

f4:%(h—e1—e2—eg+e4—e5) and fs5= %(h—el—ez—e3—e4+es)-

Fori=1,...,16, we denote by w; = wy, € R the vector of coordinates of £; — (&, 6K € k* ex-

pressed in the basis f = (f i)l.szl. These sixteen 5-tuples are the weights of the spinor representation
we are working with:

1 1 1 1 1 11 1 1 1 1 11 1 1
o (5’ 7727y 5) ‘“2:(‘5’5"5"5"5) ‘“F(‘z"z’z"z"z)
1 1 11 1 1 1 1 11 1 1111
4= (‘5"5"5’ 5"5) ws = (‘5"5"5"5’ 5)’ 6 = (‘5"5’ 27 5)
R S N I =
2°2° 222 2°2°2 22 2°2°22 2
1 1 111 1 11 11 1 111 1
@10 = (5"5"5’ 7 5) i = (5"5’ 777 5) w12 = (z"z’ 7 5"5)
11 1 11 11 11 1 111 1 1
w13 = (5’ 77777 5) @14 = (5’ 5"5’5"5) wis = (5’ 7 5"5"5)
and w6 = (1, l, 1,1, l) .
2°2°2°2°2
As generators of the Weyl group, we take the involutions §; for i = 1,...,4, which exchange

Sfiwith f;,, and let the others f’s fixed, and S5 is the one such that Ss(f;) = f; fori=1,2,3 and
Ss(f;) = —fy for {j, k} = {4,5}. The corresponding matrices in the basis f are denoted the same:

[¢ ) 0 0
0 0
0o 0 .

(=]

)

[¢

) (

)

) 0 (

)

D 0 [¢

S = Sy = S3 = Sy =

S oo -
SO OO =
oSO = O
o - O O
==}
SO OO
(=N -}
SO O =
(=R =]
== ]
S o oo~
[=ReReis
(= =]
oo =0

0 -1
-1 0

1
0 0
0 0
0 0
1 0

0
0
0
1

=l

1
0
0
0

oSO O =
oo = O
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As a Coxeter element, we take

|
—_

C = 5152538485 =

(=R o)
[=ReRleNel
(=R =)
[=NeNele)
[=NeNeNe]

-1
whose order is verified to be the Coxeter number i = hp, of W(Ds), namely h = 8. Let Pc be the

Coxeter plane and IT¢ : R’ — P¢ be the corresponding Coxeter projection. By definition, P is
the 2-plane in R3 which is fixed by C and such that C|p,. is a rotation of angle 2/h = n/4. Over

the complex, the Coxeter element C admits A = e’ asan eigenvalue, with associated eigenspace
of dimension 1 and spanned by the eigenvector v = ((=1 + i)/ V2,0, (1+0)/V2,1, 0). Then
Pc is the plane spanned by the real and the imaginary parts of v. After normalization, we get that
the following two vectors form a basis of Pc which is orthonormal with respect to the standard
Euclidean structure on R>:

1 1 1 1 1 1
vre—( 2,0, 7 \/5’0)”““‘(2’ A 2,0,0)
Then with respect to the bases f and (v, vim ), Coxeter projection is written x — ({x, v,y , (X, Vim))
and one can compute all points I1o(w;) € R? fori=1,...,16. One obtains the sixteen black dots
in Figure 2] with the corresponding label indicated in green inside each. Then (up to an irrelevant
rotation), one can identify the black dots of our figure with the vertices of [DD| Figure 3.(a)].
These latter being labeled by Ducat’s notation xi, ..., x3,41,. .., ag for the weight variables, one
can associate one of our weights w; to each of them. On the other hand, we indicated what are
the weights of Wick’s coordinates in [Pi5, Table 4.1]. We thus deduce the following relations
between Ducat’s labelling of the weight variables and the components of Wick’s parametrization:

there exist complex constants v;’s (for i = 1,. .., 10) such that the following relations (as rational
functions) hold true:

X1 X2 X3 al ap

— =vixXyy, —=wnPy —=vix;z, —=wPs, — =vs5xs,

as as as as as

as aq ag ay asg

— =VeXu, — =v7Ps, —=wP, —=voxn, — =ViXss.

as as as as as

Taking (v;)10; = (1, -1, 1,1,1,1, -1, =1, 1, 1) (thatis v; = —1 fori € {2,7,8} and v; = 1
otherwise), the relations above can be solved nicely. We obtain that A = (x; j)z‘s,j: | € Asyms(C)
is such that W(A) € Ss has Ducat’s coordinates xi, ..., x3,41, ..., as if and only if the following
equality is satisfied:

0 X2 X13 X4 XI5 0 az X3 X1 a

-x12 0 X3 X4 X5 1|~ 0 X2 X3 X3

(54) -x;3 —x3 0 X34 Xx35|=—|-x3 —-Xip 0 a3 X
0 s X, 0

—X14 —Xp4 —X34 X45 -x1 —X»3 -0 as

—X15 —Xp5 —Xx35 —Xx45 O —ay —Xi23 —X; —ag O

This proves the first point of Proposition 4.1l

With (54)) at hand, proving the second point of Proposition 4.1 becomes straightforward using
some formulas obtained in our previous article. In [Pi5], we gave explicit expressions for the 10
face maps expressed in Wick coordinates. The weight polytope Ap, C R is the convex enveloppe
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“® o

X7 X6

X2 X3

“@ © o T
X5 X8

) 0

Ficure 2. Projection of Gosset’s grapl@on the Coxeter plane and correspon-
dance between the weights (with their label used in this paper in green) and the
spinor coordinates of [DD), Figure 3.(a)] (in red).

of the 16 weights (53). It has 10 “W-relevant facets, five ‘positive’ facets A}, ; = Ap; N {x; =
+1/2} and five ‘negative’ ones Ap,;=ApsN {x;=-1/2}(withi=1,...,5).

The face maps S5 --» S4 associated with the five positive facets are written very simply in Wick
coordinates since they correspond to the maps Asyms(C) 3 A — A; € Asym,(C) where A; stands
for the 4 X 4 matrix obtained by removing from A its i-th line and its i-th column (cf. Proposition
4.7 in [Pi5]). Viewed (54), we immediately get the second point of Proposition [.1] for the five
face maps associated to the positive facets of the weight polytope.

The expressions in Wick coordinates of the five face maps associated to the negative facets of
Ap, are more involved. Some birational models of these maps are the maps A — A;; = '¥; j(A)
with i # j where ¥; ; : Asyms(C) --> Asymy(C) is the rational map considered in (actually just
above) Corollary 4.8 of [Pi5].

Using (54) and the explicit formulas for the ¥; ;’s, it is straightforward to get the following
expressions for some models of the five ‘negative face map’ written in terms of the initial cluster

28Gosset’s graph is the 1-sekeleton of Gosset’s polytope 151, which here coincides with the weight polytope Ap,.
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coordinates:
0 -—asas -asX3 ay 0 X2 X3 X
A 1 | asas 0 —asxy; X3 A 1| =Xy 0 —aias asds
15=— 21 = —
ay | asX3 asxy 0 X a;| —X3  aias 0 asX3
—ay —X3 —X1 0 —X123 —aydas —dsX3 0
0 aydas X3 —dasXy 0 X23 as asg
—daidas 0 X12 —deds 1 —X23 0 —dadas a5X3
Asa=oo Xp 0 -X Ad1 =+ 0
as —X3 412 —X1 x| —a3 aas asxp
asxp deds X1 0 —dag —a5X3 —dasXy 0
0 a5X3 asxy —ap
1| —asX 0 agas —X
and  Asy= — 5X3 6ds 123
ag | —asxy —asas 0 -Xi

a Xz Xi 0

Up to an irrelevant minus sign for some entries, the coefficients of these matrices are all either
monomials in the frozen cluster variables or products of a cluster variable with such a monomial,

which completes the proof of Proposition 4.1l
*

We finish this subsection by two remarks.

The first is that, if our results above are only about the cluster nature of Gelfand-MacPherson’s
web of the spinor tenfold S5, we are convinced that they must have a kind of X-counterparts for
the web ngl which is truly the one we are interested in. The lack of a theory of ‘coefficients’

and above all of their mutations is the reason why we didn’t work with ‘W gﬁ’l . We hope to come
back to this in the future. ‘

Another remark concerning the above material is that while the approach used to prove Propo-
sition 4. Tlultimately relies on some explicit calculations, it nevertheless points to a geometric way
of constructing the LPA cluster structure on S5, namely by means of the face maps associated
with the facets of the weight polytope. In an ongoing research project, we have verified that this
geometric approach generalizes to several other homogeneous spaces. We hope to continue our
researches in this direction in the near future as well.

5. The web Vl;,’“, Bol’s web, and their abelian relations
5

In this subsection, we study a certain 5-subweb W+ of ’WgM which carries interesting ARs

which are in a 1-1 correspondance with those of Bol s web. In particular, one recovers Abel’s
5-term identity from an 1-AR with logarithmic coefficients and monomial arguments, which is
new as far we know. The latter abelian relation will be used further in section §6] for recovering
the del Pezzo hypertrilogarithmic identities HL0g3P4 from HLOGy;,.

5.1. The web WY+ and its abelian relations. In this subsection, we aim to study the relations
5
between the web

1 yiayss 1 yizys
W;S = W((yzs , y24y35), (— ) —) (y24, Y1425 ) (— — ) (y14, y13y24)
Y13 Y13 35 y3s
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and its abelian relations to those of Bol’s web.
The 1-AR ARj of Proposition which corresponds to the differential identity

5 5
1
0=) &Uj(6) =3 ) &U;(Loglx)dy/y - Log(y) dx/x)
j= i=1

WGM +,

spans the subspace of weight 1 abelian relations of one has

Wi(AR(WEY™)) = (AR}).

Determining the 1-ARs of weight O of W}S amouts to find the scalar constants c; ; (with i =
.,5and s = 1, 2) such that the differential identity Zf 1 (c, 1dU;i1/Ui1+¢indUis/U; 2) =0is

satlsﬁed hence reduces to elementary linear algebra. We find that any 3-subweb of WGM * carries
such an 1-AR (which moreover is unique up to multiplication by a non-zero scalar) Wthh will
be said ‘combinatorial’. These ARs span a space ARC(Wg?/H) which is of dimension 5. From
Proposition [3.312, it follows that we have the following decomposition in direct sum:

(55) AR\(W} ) = ARL(W,) @ (ARLY'

with ARL(W3, ) = Wo(AR'(W5,)) and (AR}) = Wi (AR'(W3,)).

Let % be the subgroup of the Weyl group #p, spanned by the birational involutions o-; for
i = 1,...,4 (see (28)). It is a group isomorphic to the Weyl group of type A4 (hence to the
symmetric group Ss) which lets the 5-web W}S invariant. Moreover, it can be verified that %
acts by linear automorphisms on the space of 1-ARs of W;,S making of it a representation of Gs.
By straightforward computations, we prove the

Proposition 5.1. The decomposition in direct sum (55)) actually is the decomposition of AR(Wy,)
into irreducible representations of Ss. Moreover, we have the following isomorphisms of Ss-
representations:

1 5 1
(56) ARC(W;g) = Vi and (ARj) = [15]
Our aim is now to relate W+ and its ARs to Bol’s web and more specifically to its main abelian
relation, the dilogarithmic AR given by Abel’s relation.

5.2. The web W;;’ and Bol’s web. In §4.5.2 of [PiS], we gave several birational models of
5

Serganova-Skorobogatov’s embedding fss : X, < Y,. Let (a,b) € C? be such that X, iden-
tifies with the blow-up of the plane at the vertices of the standard quadrilateral in P? plus the point
[a : b : 1]. In [PiS] (around Corollary 4.12 more precisely), we obtained that for generic complex
constants sy, 52, 53 € C and setting s;; = 5; — s; for any i, j and y = (y13, 14,24, )25, )3,5), the
following rational map

(x=Ds13 x(y=D@@=->b)sis.3 yla=-b)sy ((b-1)s3 (x—y)(b—l)slz)

%y)—y= (@a=1s3 (x=yab-1Ds3si2” (x=ybsiz” = Dsn (=1 (a-b)sy
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is a birational model for fss. If one is no longer interested by taking track of the parameters a and
b, by eliminating some parameters, one can consider the rational map

x(y-1) guy 8s o (x—y))
(x=y G-y G-D " -1

where the g;;’s are non zero complex parameters required to satisfy the following polynomial
relation:

(xay) —Y=18&13 (-x_ 1) > 814

I = 213814824825835 — £13814824 — 813814835 — £13825835 — 824825814
— 824825835 + 813814 + 813835 + 814824 + 824825 + 825835 -

This relation admits g13 = g14 = g24 = 25 = g35 = 1 as a peculiar solution. We will work with
the corresponding rational embedding of C? into Y5 = C>, which is given by

x(y—=1) vy 1 x—y)
x—-y “x-y y-1"y-1/)

(57) D (x,y) — (Y13, V14, Y24, Y25, Y35 ) = (X -1,

One verifies that

1 y 1 X y X

o )= w51 =) )
( Y5) (y—ly—l x=1x=-1/)"\x-y x-y
(y— 1 x- 1) (x(y— 1) y(x- 1))
x=y x=y/"\ x-y 7 x-y
from which it follows that d(U;; o D) A d(U;2 o D) = 0 fori = 1,...,5. This implies that the
pull-back under D of the 2-codimensional web W;S is only 1-codimensional. More precisely,
setting w; = U;joDfori=1,...,5, that is

1 1 y y—1 x(y—1)
w)y = ) w3 = ) Wy = ) ws = )
x—1 xX—y xX—y xX—y

wl:yTl’

it comes that D* (W}S) is the following web:

1 1 y y-1 x(y—l))
y=-1"x-1"x-y x-y  x-y |’

5
i=1

B :W(w,-) :W(

By using the criterion of [Pi5, §3.5.2], this web is easily seen to be a model of Bol’s web and, as
such, carries a version of Abel’s 5-terms identity of the dilogarithm. We are going to prove that
the latter can be obtained in a very simple way from the logarithmic identity #8).

We identify all the target affines spaces of the first integrals U; to a same affine space with
standard coordinates denoted by uy, u;. Then one verifies that for any i = 1,...,5, the image of
U; o D is the line cut out by 0 = 1 + u; — up which is parametrized by L : z — (z,z + 1). One has

L= (Log@lﬁ ~Log(z+ 1&) - _dR()
+ Z Z

where R stands for the ‘cluster dilogarithm’ defined by

1 (*(Log(l L
R(u)z—f og+n _Log®) ) foruso0.
2 0 t 1+1¢

Pulling-back the identity 0 = % Z?: | € Ulfk(Log(x)% - Log(y)d—;) under D is written
w](dR) — w3(dR) + w3 (dR) — w,(dR) + wi(dR) =0
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or equivalently, in integrated form

- _ 2
S R o e Rl e R = B
y—1 x—1 xX—y xX—-y xX=y 3

a functional relation which is identically satisfied on any complex domain containing the ‘triangle’
{(x,y) e R? | 1 <y < x}. Itis a version of Abel’s identity of the dilogarithm. We will denote this
identity as well as the corresponding AR of B by Abg.

More is true: it can be verified that given any 1-AR of a 3-subweb of W+5, its pull-back under
P is an abelian relation of the corresponding 3-subweb of B. With a few more computational
checks, we get the following

Proposition 5.2. The pull-back under D gives rise to two linear isomorphisms
Iy o 1w+ \ ~
(AR;) =~ (Abg) and AR-(Wy.) ~ ARc(B)

which actually turn out to be isomorphisms of Ss-representations.

The last statement of this proposition requires a few lines of explanation. The point is that the
group #’ ={oy,...,04) C Bir(Ys) lets invariant the image of the map (37)) hence gives rise to a
birational action on the source space of . More precisely, one verifies that setting

o1(x,y) = (x/y,1/y)  G2x,y) =, x) F3(x5,y) = -x,1-y) 7ax,y) =(/x,1/y)

then, as rational maps from C? --> C> = Ys,onehas Dod; =o;joDfori =1,...,5 The
birational action % — Bir(C?) gives rise to a linear action of S5 on AR(B). This gives a precise
and rigorous meaning to the last assertion of Proposition 5.2

Remark 5.3. 1. B is isomorphic to the web Wy, defined on the moduli space My s by the
five forgetful maps Mos — Moa. Up to this isomorphism, the birational action of W' ~ Cs
on C? corresponds to the one of Aut(Mys) = S5 on Mos. That AR(’WMO’S) is isomorphic to

V[5221] @ V[lls] as a Ss-representation is due to Damiano (see |Pi5, Remark 3.1]).

2. We give above a new derivation of the five-term identity of the dilogarithm (in the form (38)))
from the differential relation in five variables [8)) which involves only logarithms and monomial
functions. As far we know, this is new. It would be interesting to investigate whether the latter
relation in five variables can be obtained formally from Abel’s identity in two variables or not.

3. The identities [@8) and (38) admit real analytic versions which are globally satisfied. Set-
ting 6* = %(Loglxldy/y — Loglyldx/x), one verifies that ;- U:(67) = 0 holds true iden-
tically on Ys. Similarly, if one defines the ‘positive cluster dilogarithm’ by setting R*(u) =
% fou (Logl|1 + |/t — Loglt| /(1 + ©) ) dt, then for each connected component O of the complement
in R? of the arrangement of lines cut out by xy(y — 1) (x = 1) (x — y) = 0, there exists an integer
no € Z such that Z?zl R (@) = %zna on O.

6. Recovering the functional identities HLoggp,’s from HLOGy,

In this section, we state and prove a precised version of the seventh point of Theorem [L.I]which
is about the fact that any weight 3 hyperlogarithmic functional identity HLoggp, of an arbitrary
but fixed smooth del Pezzo quartic surface dP4 can be recovered from the identity between 2-
differential forms HLOG ..
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We will first argue symbolically: we will associate a symbolic relation to HLOGy, and will
explain how to get from it the symbol corresponding to the hyperlogarithmic identity HLog(dP,).
Then we will argue more concretely, in terms of abelian relations.

6.1. Arguing symbolically. Let O stand for the quadrilateral cut out by xyz(z + x —y) = 0 in
the homogeneous coordinates [x : y : z] on P?. Then the space Hy = HO(Pz,Qll,z(Log 0)) is of
dimension 3 and admits the following logarithmic 1-forms as a basis:

dx —dy

d d
v1 = dLog(x) = —x, vy = dLog(y) = o and wv3=dLog(l+x-y)=—""-—.
X y l+x-—y

Recall the 2-form Q defined in (B6) (see also ). To it, we associate the symbol
SOQ) =vi @ Av3) =@V Av3)+v3® (Vi Awy) € Hy ® A?Hy.

Let (n : Hy — Q(lj(Pz) be the natural embedding into the space of rational 1-forms on the
projective plane. For p € P?\ O, one has a well-defined integration map I, : Hy — Op2),

vi— (I, :z— fpz v) from which one gets a realization map
Ry =11, ® Ao : Ho® A’Hg — Q|

which associates to a tensor v, ® (v, A v.) the germ of 2-form ( fp * va)(Vs A ve) at p. Then it is
clear that the germ of Q at p is the image of the symbol S(Q) by the realization map R,,.

For any i € [[10]], the pull-back U;‘(Q) has the same nature on Y5 that Q has: it is a linear
combination of 2-forms of the type Log(f)(dLog(g) A Log(h)) hence one can associate a symbol
to it. Fori = 1,..., 10, let n; be the logarithmic derivative of the polynomial ¢; defined in (I7):
one has

_dyis _dyis _dyxu _ dyss _ dyss _dPy
==, m=—, Mm=—, m=—", n5=—= and 5= —
Y13 Vi4 Y24 Y25 y3s Py

fork=1,...,5. Let Hy, be the vector space admitting the n;’s as a basis{?]

10
HY5 = @ C?]i .
i=1

For any i € [[10]] and any s = 1,2,3, one can express the logarithmic derivative of U, as a
linear combination in the 7;’s, with non-zero coefficients equal to +1. For instance, for i = 1, one
has

m

dLog(Uy,1) = 14, dLog(Uip) =m3 +1ns and  dLog(U;3) =1 .

Accordingly, the ‘symbol” we associate to U;(€2) is the element of Hy, ® A’Hy, given by
S(U(Q)) =14 ® (3 + 15) A7) = (73 +15) ® (14 A 16) + 716 ® (4 A (3 + 75)) -

The n;’s being closed, each is locally integrable on Ys. For any z € Y5 \ Z, one thus has a
realization map

(59) R. : Hy, ® A°Hy, — Qj .

2

. But we believe it is better to
C(Ys)

29For concreteness, one can take for H the subspace spanned by the 7;’s in Q
deal with H as an abstract vector space and not as a subspace of a bigger space.
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which associates to a tensor 77, ® (17 A 77.) the germ of 2-form ( fz * na)Np A 1 at z.

The nine other symbols S(U;(Q)), i=2,...,10 can be computed easily. Recall (see (38)) that
g =—1forie{2,4,7,9}, and ¢ = 1 otherwise.

Lemma 6.1. In Hy, ® A’Hy,, one has ¥,,°, € S(U;(Q)) = 0.

Proof. This follows from the fact that Z}Bl € U(Q) = 0 and that the realization map (59) is

injective. But a more elementary proof is given by expressing the sum § = l.lfl € S(U;(Q)) in
the basis n; ® (7; A 1) of Hy, ® /\ZHYS, fori € [[10]] and j, k such that 1 < j < k < 10. Then one
obtains that S = 0 by pure elementary linear algebra. |

From the very definition of Q (see the formulas at the beginning of §3.1.2), it can be easily
verified that the symbol of Q not only is an element of Hy ® A>Hg, but actually lies in A’Hg, the
latter being seen as a subspace of Hy ® Hy ® Hp. It follows that for any i € [10]], S (U} (€)) lies
in A3Hy, from what we deduce immediately the

Lemma 6.2. The symbolic identity of Lemma actually lies in /\3Hy5. One has

10
(60) D aS(Uj@)=0 in APHy,.

i=1
Remark 6.3. In [CPI, that HLog(dP,) is satisfied is proven by showing that its symbol S(HLog(dPy4))
vanishes in the third wedge product of the space of global 1-forms on dP4 with poles of order at
most 1 along the lines contained in dP4. Hence, the vanishing of S(HLog(dP4)) = 0 is for-
mally analogous to the vanishing of Zl.lfl € S(U?(Q)). However, there is a significant distinction:
S(HLog(dPy)) is a sum of 10 weight 3 tensors, all of which are integrable in the sense of Chen,
meaning that the iterated integrals associated with each tensor are homotopy invariant (see [Br,
§6] for further details). This is not the case for the symbols € S (U} (Q)) as some (if not all) of
them are not integrable. Therefore, (60) represents an algebraic identity that does not have an
analytic counterpart in functional form.

From the material presented in §2.3.5] we get that the map

(61) FSSi(x,y)*—>(Y13,Y14,Y24,Y25,Y35)
with
Y _yla+1)(ay—-bx—a+b+x—y) _ax(y—-1D(®+1)
BT (x—y) (b-y) A Y
b-y)(-1+x)b (@a-x)(x-y)
Y24 Y25

b+ -0)b+x+(=1+y)a-y) b+ Dx(=-x)b+x+(=1+y)a-y)
(ay — bx) (b + a)

x(b+1)(b-y)

is a birational model of Serganova-Skorobogatov embedding fss : dPy — Y.

and Y35 =

By direct computation, we get that F (‘Wg;” ) coincides with the 10-web on P2, denoted by

W5, which is the direct image of del Pezzo’s web ‘W yp, by the blow-up map 8 = S, : dPy — P?
at the five points [1 : 0:0],[0:1:0],[0:0:1,[1:1:1]and [a: b : 1]: one has

(62) Wap = Fys(WFM) = B(Wap,).
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Actually, we have that for any i = 1,..., 10, one has Fs(dU;1 A dU;3) = 0 hence the map
U; o Fgg has rank 1 (at the generic point of C?) and defines foliation Fg (Fu,) which coincides
with one of the web (62). More explicitly, setting 7 for the foliation defined by the level subsets
of f, one has

Fss(Fu) = T,

fori=1,...,10, where the ¢,’s are the following rational functions
_(x=1)(bx —ay) b6 =
R E TR o=
= Dbx - ay) _
-y =
_O-Dx-a) _X
R Ty %7y
_y(x—a) _x—1
¢4_x(y—b) ¢9—y_1
_yx—=1) _b(x-a)
¢5_X(y—1) ¢1o—a(y—b)'

(compare with the last pages of [Pi5, §4.5]).

The preimage by Fsg of the jivisor Z of Y5 defined in (I8) is the divisor Z defined as the union
of the ten irreducible divisors Z; = {y; = 0} € C*> fori = 1,..., 10, where the y;’s are given by :

X1 =x x2=y x3=x-1 xya=y-1 xs=a-x xe=y-b xr7=x-y

Xs=ay—-bx yo=ay-bx—a+b+x-y Y10 =ab(x —y)+ (b —a)xy +ay — bx.
The logarithmic derivatives 4; = dLog(y;) for i € [[10] are linearly independant over C then
span a subspace, denoted by H,, of the space of rational 1-forms on C2. All the pull-backs
e = F¢(ny) of the rational 1-forms 7;’s under the map (6I) are elements of H,; and it is
straightforward to compute them explicitly but we will not even need that. Just for the record, we
state the

Lemma 6.4. The pull-back under Fs induces a linear isomorphism Fg @ Hy, — H,, which
is defined over Z with respect to the bases (nk)igl and (/li)l.lfl of Hy, and H,j, respectively.

Setting
Uiy = Fog(Uis) = Uis 0 Fss
for i € [10]] and s = 1,2, 3, taking the pull-back of (60) under Fsg, one gets that the following
relation holds true in /\3Ha,b:

10
duy  dup  du
(63) DS A S 2 2,

o\ Wi U3

Since everything is explicit, (63)) can be made explicit as well. For instance, for i = 6, one has

b+a (@+1)y b-y
Us o Fss = , ,
O0-Da (y-Da (y-Da
hence
d d d
6 el Ay oz _dy _ Ay g Mes by

Ue,1 y-1’ Up2 y y-1 Ug3 _y—b_y—l
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from what it follows that
d d d d d d
o1  duen dues _ dy Y A Y
Ug,1 ugp ug3 y (-1 G-0b)

The computations of all the others wedge products
@; = dIn(u;;) A dn(uis) A dIn(u;z) € A°Hgy,

are as straightforward as the one above. Setting

b a a-1 and ba-1)
rnn=re=b, m=ri=a, ry=rg=—, Ir4=r9= rs=ryp=———,
1="T6 2 =17 3= = 4=T9= 0y 5 =110 ab—1)

one obtains that for any i € [[10]], one has

de; de; de;
i =— A A .
N [¢i (¢i—1) (¢i—ri)]

In other terms, for any i, @; is equal to the symbol of the weight 3 iterated integral AHI.3(¢,~)
on C?, where AH 13 stands for the complete antisymmetric weight 3 hyperlogarithm on P! with
respect to the 4-tuple of points (0, 1, r;, o) (see [CP} §2.1]). Injecting this in (63) gives

N dg; de; dgo;
(== -0
2. (¢,- A(¢,-—1)A(¢i—ri))

i=1

As explained in [[CP], this is equivalent to the fact that the weight 3 hyperlogarithmic identity
10

D & AH(9) =0,
i=1
that is HLog(dP,), holds true.

6.2. From HLOGy, to HLog(dP4), by manipulating abelian relations. While we consider
that the above symbolic derivation of of HLog(dP4) from HLOGry; is pretty much clear, we have
a feeling that it is somehow not very concrete. In this subsection, we describe succinctly how to
obtain HLog(dP4) from HLOGy, by only working with genuine abelian relations. To simplify
the notation, we write HLOG instead of HLOGy, below. Non justified arguments are easy to
check (and this is left to the reader...).

Let F be one of the polynomials {; defined in (I7), then Resy = Resp(HLOG) is a rational 2-
AR of ‘W%M carried by the 5-subweb ‘W%MF =W(U, | Jj € Jr) for a certain subset Jp C [10]] of
cardinality 5 (see §3.2.1). Moreover, its non-trivial components, denoted by Res ; for j € Jp, are
linear combinations with coefficients 0, 1 or —1 of the wedge products (dU jaNdU j,;,) [(U;adU )
for a, b such that 1 < a < b < 3 (see Corollary 3.10). Replacing each such term by its primitive
%(ln(Uj,a)d In(Up,) = In(U j,)d In(U j,)), one obtains a 1-AR denoted by fResF € ARI(’W%”),
which is such that d f Resr = Resp. The pull-back of it under Fgs is a 1-abelian relation for
Fig(Wysr) = W(g; | J € Jr) which is closed hence admits a primitive, that we will denote by

flg}[fResF].
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As an explicit example, let us consider the case when F' = {19 = Ps = 14+y14—y13y24. This case
is completely similar™] to the one of the web W;S whose ARs have been considered in Proposition
and Proposition above. When F = Ps :

o the polynomial F = Ps is a factor of U, for (i, s) = (j,3) with j € Jr ={5,6,7,8,9}.

e moreover for any j € Jp, F appears in the numerator of U;3, with multiplicity 1. It
follows that Resy is the rational 2-abelian relation 0 = 3’ ;. €; U;f(n) (where 7 is the
rational 2-form defined in @3));

e its primitive f Resy is the 1-abelian relation 0 = ) jc;, €; U;f(cS) where ¢ is the privileged
primitive of n defined in @7);

e then it is not difficult to compute the pull-backs of the components f Resr,; under Fg.
One obtains that, for any j € Jr, up to the addition of 1-forms of the type dIn(¢; — z;)
with z; € {0, 1, r;}, one has

©5) 5§UR%m):lC“%)_m@f-D

2\¢j-1 9,
where R : x — % flx (In (w)/(u — 1) = In (u — 1)/u)du is a version of Rogers’ dilogarithm
defined on [1, +oo[. After integrating the identity 0 = ¥ jc;, €;F( f Resy j), one obtains
the following explicit form for the identity corresponding to the 0-AR f Fo( f Resr):

(66) R(M)+R@)—R(x)+k(f)—ie(x_1)=o,

x(y=1) y y-1
arelation satisfied by all x,y € [1, +oo[ such that 1 <y < x.

Jao; = g51a.

Given ¢ € P! \ {0, 1, o}, one sets s = {0,1,&, 00} and for i € [[10]], one denotes by H; the
pull-back under ¢; of the space of holomorphic 1-form on P! \ £,. with logarithmic poles at the
points of %,.:

H, = ¢;~kH0(P1, Qpl (Log Z:ri)) c Ha,h :

This space admits d¢;/¢;, dp;/(¢; — 1) and d¢;/(¢; — r;) as a basis and for any o, 0’ € {0, 1, r;},
one defines a weight 2 antisymmetric symbol by setting

gRi” - ((Iﬁidfia) " (¢id—¢icr’) - (ﬁ((z C—ZZcr) " (Z ilzcr’)) € AH; ¢ A Hop.

Clearly, each ﬂ%’g > 1s the symbol of a dilogarithmic function composed with ¢;. For instance, it

follows from (63) that ‘Rgl is the symbol of the term R(y) appearing in the analytic expression

(66D offlgg(fResF).

For any i, the determination of the weight 2 symbol of the i-th components of the abelian re-
lations f F( f Res;, ) of Wy, = W(¢1, ..., ¢10) for any {; can be obtained by means of straight-
forward formal computations from the decompositions of the logarithmic derivatives of the com-
ponents of the first integrals U; of ng’l . As an example, below we give details in the case i = 6.

30This not a coincidence. Indeed, since the Weyl group Wy, = Aut(Y’s) acts transitively on the set of weights of
the half-spin representation, it acts similarly on the set of weight divisors D,, C Ys hence on the set of residues of
HLOGy;, along the latter (possibly up to rescaling but this is not relevant).



54 L. PIRIO

Setting A; = (dIn U,-,s)iz1 fori=1,...,10, one has the following expressions of the dIn U; ;’s
as linear combinations of the 7;’s:

Ay = (14,15 + 113,76

Ao =( —nums —m +n2,m7—m)

A3 = (13,14 + 12,718 )

Ay =( =1ns5,—n5 + 14 +11,-15 +19)

As = (12,13 +11,110)

As =(17 =12 =19, M8 + 11 — 172 = 19,710 — 12 =19 )
A7 =(n6 —n3 — 19, —13 + 18 — 109, =73 + N10 + 74 — N9 )
Ag = (16 +1n1 = 19,77 = M9, 75 + 10 — 19 )

Ao = (16 =18 + 172,17 + 13 — 118,10 — 118 )

Ao =(16 =15 = N8,17 — M5 + 14 — N8, —T5 — 75 + 19 )

The indices & such that the 6-th component of the residue
Res; = Res; (HLOGy,) € AR*(W5M)

is non-trivial are exactly the ones such that 7, appears in the expression of Ag above. Namely, the
set of such indices is 8¢ = {1,2,7,8,9, 10}. For each k € K¢, let ki, € {—1,0, 1} be the triplet
obtained from Ag be deriving it formally with respect to n; (the latter hence being then considered
as a symbolic indeterminate). One has

K1 =(O’1’O) K2:(_1’_1’_1) K7 :(1’050)
K3 :(0a150) K9 :(_15_1a_1) K10:(0a05 1)'

From the formula (33)) for Q, it follows that for any kx = (ax, Bk, Yx), the 6-th component Resy ¢ =
of the rational 2-abelian relation Res; is

dUs dU6,3) (dU6,1 dU6,3) (dU6,1 dU6,2)
A — Bk A + Yk A .
Us, Us3 Us,1 Us3 Us,1 Us,

ReSk,g = a/k(

Each Res; ¢ is a rational 2-form, but the expression above, up to a scaling factor (equal to 1/2)

can also be seen as an element of /\2Hy5, which will be denoted by %Resiygn b, Using (64)), for any

‘me) which belongs to A?’Hg. One has

k,6
QZ:%((%_yd—yl)A(yiyb _yéiyl))_%((_y{yl)/\(yiyb_yéiyl))
({520 5%

Expressed in terms of the dilogarithmic symbols ‘Rg ,» defined above and considering that
r¢ = b, one obtains

k € K one can compute the pull-back Qg = kg (%Res

of = 5 (85, -9, - 0g,) + 5 (00,) + B (05
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hence
(67) o) =%, o5
6 _ a6 6 _ o6 _ b
og =%}, %9 = R, 010 =%g1 -

One can verify that for any k € K¢, Q]f is also the symbol of the dilogarithmic function which is

the 6-th component of the 0-AR f E( f Res;,). Then using (67), straightforward computations
give us that the symbol of the sixth component of the sum

10
(68) > Es(n) f E5([Resy)
k=1

is equal to
d d d
(2 0%, - (25 o0, + (L)@t

This is the symbol of the complete antisymmetric weight-3 hyperlogarithm A H3(¢¢) with respect
to the set X,, = X, = {0,1,b, 00} C P! (cf. [CP, §2.1.3]). Through similar and straightforward
computations, one can verify that the same result holds for each component of equation (68). It
follows that the 1-abelian relation (68) of W, corresponds to the derivative of the hypertriloga-
rithmic functional abelian relation Hlog(dP,4). This leads to the justification of the formula:

10
(69) Hlog(dP,) = ) [FS*S () f Jost ( f Resk(HLOGys))]
k=1

which summarizes the preceding discussion on how the weight-3 hyperlogarithmic functional
identity Hlog(dP4) can be derived from the differential identity between differential 2-form with
logarithmic coefficients HLOGy;.

7. The (r — 3)-rank and the (r — 3)-abelian relations of ’WyGM forr=4,...,7

In this section, we extend some of the results obtained above to the cases r = 6 and r = 7. The
current proofs are based on explicit computations carried out using a computer algebra system.
These computational details are omitted here, but we intend to provide conceptual proofs in a
future work.

7.1. In addition to the notations introduced in the Introduction, we use also the following ones:

e we denote by D} the 1-marked Dynkin diagram associated to the simple Lie group G,,
with one marked vertex corresponding to the maximal parabolic subgroup P, C G, such
that G, = G,/P,. We denote by v, the dimension of G,. Then vy, — r is equal to the
dimension of the quotient space Y, , denoted by y,. One has

vy =dim G, and yy=dmY, =y, —r;

e V. stands for the corresponding minuscule representation (of dimension v, equal to 10,
16, 27 and 56 for r = 4,5, 6, 7 respectively);
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e A, stands for the moment polytope of G,, which coincides with the weight polytope in

b, (R) of the minuscule representation V,. The series of A,’s coincides with the one of
Gosset’s polytopes (r — 4)1. Each admits two kinds of facets, some (r — 1)-simplices
and some (r — 1)-cross-polytopes (also known as ‘orthoplexes’). Only the latter are “W-
relevant. The first two of the series are also known by other names: Ay is the hypersym-
plex Ay s and As is the 5-demihypercube.

L, (resp. K ;) denotes the number of lines (resp. of conic fibrations) on a fixed smooth del
Pezzo surface dPg_,;

we recall that there are natural bijections between £, and the set of weights 28, of V,
which is also the set of vertices V(A,) of the weight polytope. Hence one has

6 =|L| = [Vo(ap)| = dimV, = v,.

Similarly, the set K, of conic classes on dPg_, identifies with the one of cross-polytope
facets of A,.

r

v, =dimV,

=|-£r|=€r

G, cPV,

Yr = dlmgr

Yr= dim Y,

K = ||

10

GH(CY) cP?

16

Ss c P13

10

10

—
S D S

27

OcP? c P*

16

10

27

7 0—0—2—0—0—0

56

Fr c P5

27

20

126

Many features and numerical quantities of the objects considered above are given in the table
above in which OP? c P2 stands for the Cayley plane over the complex octonions O and where
Fr c P35 denotes the 27-dimensional Freudenthal variety E7/Pg. Both varieties are considered in
their fundamental embeddings which can also respectively be described as the projectivizations
of the exceptional rank 3 complex Jordan algebra J = Herm3(0O) and of the space Z,(J) of Zorn

2 X 2 matrices over J.

The Gelfand-MacPherson web we are interested in lives on the quotient space Y, = G, //H,.
Given an orthoplex facet F of A,, , there is a commutative diagram:

|

|

Y, --"-sY;
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in which the vertical maps are the quotient maps, and the horizontal maps are the corresponding
face maps. Tt can be verified that Qp is a smooth hyperquadric in P> =3 and that Y embeds into
P’—3 as a Zariski open subset. With respect to this embedding, one has Y5 = P"~> \ Hy where
‘H is an arrangement of » — 1 hyperplanes in general position.

We have that the corresponding Gelfand-MacPherson web considered here
WM = W(np|F ek,

is a k,-web of codimension r — 3 on Y, which is a rational variety of dimension y, equal to 2,5,10
and 20 for r = 4,5, 6 and 7 respectively. Since the hyperplanes of H, are in general position, for
some homogeneous coordinates ug, uj, ..., u—3 on P" =3, one can assume that H, is cut out by

upuiuy ... up_3(ug +uy + - +u,—3)=0.

7.1.1. Explicit birational models of ’VVyGM for r = 6,7. The approach used above to study

WyGS M and its abelian relations relies on an explicit birational model of this web, obtained via
a concrete birational parametrization of the spinor variety S5 embedded in the projectivization
of the half-spin representation. A key observation is that, for r = 6,7 as well, one can construct
similar (birational) parametrizations of each corresponding homogeneous space G,, considered
in their respective minuscule embeddings. This allows the same strategy, based on explicit for-
mal computations, assisted by a computer algebra system, to be effectively extended to these
higher-rank cases. In this subsection, we succinctly describe the parametrizations of G5 = OP?
and G, = Fr that we have worked with. Our main reference for the material presented here is
Yokota’s remarkable book [Yol.

In order to obtain, in each case, explicit and well-behaved formulas (defined over R, say) for the
action of the Cartan torus, we considered a real rational parametrization of the split real form gﬁ‘
of the complex homogeneous space G,, embedded into the projectivization of the split real form
VE of the corresponding (complex) minuscule representation V,. To this end, we worked with
the algebra Oy of split (real) octonions rather than with the usual (Hurwitz) octonion algebra O.
This choice is ultimately inconsequential, since tensoring O and O with C yields two isomorphic
complex algebras. In what follows, we will work with the complex algebra O = O; that we will
call ‘the algebra of complex octonions’.

Let us consider the following two invertible linear maps from R? into itself.
iy
¢ (Xi)i_g — (X0 = X7, X1 = X6, X2 — X5, X3 — X4, X3 + X4, X2 + X5, X] + X6, X0 + X7)

. 7 1
l//~(ui),~:o'—>§(M0+M7,M1+M6,M2+M5,M3+M4,M4—M3,M5—M2,M6—M1,M7—Mo)

These maps are inverses of each other and denoting by * the usual octonionic product on O = R?,
one defines O as R® endowed with the product given by

(70) - v =¢u) * Y(v))
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for any u,v € Q. Then the unit element 1, the conjugate u and the norm || u > of any element
u= (”i)l?:o are given respectively by
1=(1,0,0,0,0,0,0,1)
u=(uy, —uy, Uy, —u3, —Uy, —Us, ~Ug, Uo)
and ||u ||2= Uol7 + U Ug + UpUs5 + U3U4 .
(We thus have u -7 = u - u = ||u|* 1 for every u).

For O one of the three algebras O, O; or O, with definition field k = R or C, we define the
space of hermitian 3 x 3 matrices with coefficients in O ~ k® by setting

S1 vz vy
2" Sts2,83 €K p3 03 27
Herm3(0) =4 |v3 2 o (= e0 =~ ,
— Vi,V2,V3 €
Vo

where the symbols ~ stand for isomorphisms of k-vector spaces In this definition, the di-
agonal coefficients s; € k have to be understood as scalar elements of O, that is modulo the
embedding k <— O, s — s1, where 1 is the unit element. In what follows, we set J, J; and
J for Herm3(O) when O = O, Oy and O respectively. When O is unspecified, we will denote
J for Herm3(O) to shorten the notations. The algebra J being power-associative and of rank 3,
there exist homogeneous forms 7, Q,N € Sym(J"), of degree 1,2 and 3 respectively, such that
X3 - TXOX? + QX)X — N(X)1 = 0 for any X € J. The linear map 7 is the natural trace and
when J = Herm3(O), the cubic form N is known as the ‘determinant’ . As such, it is denoted by
det : J — k and is explicitly given by

s1 vy V2
det| |vy s »;

Vo Vio83

3

2
= T([v1.v2.v3]) - Z sillvill"+s15283.
i=1

where [-, -, -] : J3> — k denotes the associated ‘triple product’ given by [u, v, w] = (uv)w — (uw)v +
(vw)u for u,v,w € J. Then one can define ‘the adjoint X*’ of an element of J by setting

X=X>-TX)X+0X)1
for any X € J. One has XX* = X*X = det(X) 1, for any X.

To deal with the case r = 7 and the 27-dimensional Freudenthal variety Fr = E¢/Pg = G; C
PV; ~ P>, we need to go one step further and consider the space of Zorn 2 x 2 matrices with
coefficients in J, defined by

Zz(J):{[g1 Zl] a.0 €k }zk@]@]@kzk56.

Zy O Z1, 2, €]
Then we consider the following Veronese maps
Vh i 080 — J vy J— Zo(J)
bou v 1 X
W) — ‘u lul? v'uz} X [X# det(X)].
v veu vl

31Endowed with the symmetrization of the naive matricial product, Herm;(O) becomes a rank 3 Jordan algebra
over Kk, which is simple if O is non-degenerate (that is when O € {O,Q}). We will not really use these facts in this
paper, they are mentioned only in passing.
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These two Veronese maps are affine embeddings. The image of vO (resp. of v J) lands into the
algebraic subvariety of J (resp. of Z»(J)) cut out by the quadratlc equation X> = T(X)X (resp. the
set of quadratic equations Z;Z, = {1{>1, Z -07Zp = Z - 07 =0).

Proposition 7.1. Over C, that is for O = O and J = J, the Zariski closures of the images of the
two Veronese maps above are the minuscule homogeneous spaces Gg¢ and Gq in their minuscule
embeddings respectively. In other terms, one has :

v2(0 ® 0) = OP* C P(J) ~ P** and  vi(J) =Fr c P(Z,(J)) =P

The reason for our choice of the specific form(Z0)) of the octonionic product lies in the fact that
it yields particularly nice and fully explicit formulas— moreover defined over R— for the action of
the maximal torus of Eg and E7 on the associated minuscule representations Vg and V.

Let us consider the following coordinates on the spaces of matrices introduced above:

e on J = Herm3(0), (£,v) with & = (§,)3 ekdandv = (v,-)?:1 e 03 will stand for the

& ovi m
coordinates of the hermitian matrix [ Vi s v |3
va o vi &

e on Z»(J), the coordinates of the Zorn matrix 2 Zzlz] is the 4-tuple (&1, Z1,Z», {») with
iekand Z; e Jfori=1,2.
Starting from now, we deal with O = O; and J = J; = Herm3(QOy).

We start by considering the action of Hi’o ={h= (h,-)?: | € (R>0)4 } on Oy given by
(7)) h-u=(h)., - (W)?:l = (hlul , hatty , hauy , haug , ha™'us, b3 ug , by~ ug , by Mg )
for any h = (h,-)f':1 € Hio and any u = (ui)le(O)s. Clearly one has || - u|*= ||u||* hence the com-
plexification of yields the action of the Cartan torus of SOg(C) on its standard representation.

The triality on SOg(C) gives us the two following order 3 automorphisms ¢ : h — h?¥ and
¥ =¢* h— hY of H ), defined by (with b = (h)}_, € H):

Vhs Vhihyhs  Nhy hs hy \/h1h3h4)
Viihahy  Nha T N by

Vhyhy  ~Nhah3 Vha b3
and R =y(h) = ( , . \hih3hy ha )
Vinhs " Nhihy Vhy hy

h”"=<,0(h)=(

The “positive torus’ Hi’o acts on J; = Herm3(Qy;) by means of the following formula: one sets

(72) he(&,v)=h-(& ) )= (& (h-vi, B vy, B -v3))

for any h = (k; )4 | € H40 and any (¢, v) e R? x O3 We define another action of L2 ={f=
(h, b, 13) € R > 0)’ [ 1113 = 1} = (Ruo)” on I by setting

(73) £-(&v)=(@Ba)l,. (v ).

The actions (72) and (73) commute hence give rise to an action of the ‘positive torus’

TS, = L2 x H* ~ (R.)°
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on J; given by

(L1)2é hY vy R wy

& vz n
(74) (th)ye|vs & vi|=| W vy (L& h-vy
v v &

B vy kv (3)* &3
We extend the preceding action to an action of the larger group
T]) = (R0) x L x H* = (R-0)’
on Z,(J;) by setting
_ t$y t1/3(f,h)021

6 4

Z O

for all (z, (¢, h)) in the group and all Zorn matrices [?z 2 € Z»(Jy).

We have explicitly described several isomorphisms of R-vector spaces above: O, =~ RS,
Js = Herm3(Q,) ~ R?* @ O3 and Z,(J,) ~ R®J; ® J; ® R. From these, one gets well-defined
isomorphisms of real vector spaces
(76) J, ~ RY and Z>(J,) ~ R
We denote by (Cfi)l.zzl and (3 j)ig | the bases of J; and Z>(J,) corresponding to the canonical bases
of R?” and R respectively.

The genuine interest of working with the specific product (ZQ) and the explicit actions
becomes apparent by considering the content of the following

Proposition 7.2. 1. The images in GL(J) and GL(Z2(J)) of the ‘positive tori’ TSO and TZO land
into E¢ and E; respectively. Consequently, up isogenies, the actions (I4) and (13) are induced by
the ones of some Cartan subtori of these two simple complex Lie groups.

2. The bases ((ﬁfi)l.zzl and (3 p;il are bases of weight vectors for TSO and TZO respectively.

More precisely, for any i € {1,...,27}, there exists a weight w; = (wi,s)Ez | € %Z6 such that for
any (6, h) € TS, with € = (1, 6) € (Rso)” and h = (h)*, € (Ro)", one has

4
(6. 1) 0 & = wi(6. 1) & = (0, 02 [ | ) €.
k=1

And there is a similar statement for the action (13)), but with weights in %Z7 U %Z7.

Proof. The first point follows from the explicit description of the Lie groups Eg and E7 as sub-
groups of GL(J) and GL(Z>(J)), respectively, as found in [Yol]. For instance, direct formal com-
putations show that det((f, h)e Z) = det(Z) for every (¢, h) € TSO and Z € J. Hence, the image
of this torus in GL(J)actually lies in Eg, according to the definition of this group given in [Yo,

§3.114

32Actually, it was by examining the descriptions of the real parts of the Lie algebras of the Cartan tori of the
complex Lie groups E¢ and E, as given on pages 94 and 139 of [Yo], that we derived the explicit formulas for the

torus actions (74) and (73).
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Direct formal computations, made possible by the completely explicit nature of the actions
and (73), yield the second part of the proposition m]

One can easily determine the weights of the representation for each case. For instance, when
r = 6, we obtain the following set of 27 pairwise distinct weights

(2,0,0,0,0,0),(0,2,0,0,0,0), (-2,-2,0,0,0,0), (- 1,0,1,0,0,0),
(-1.0,0,1,0,0).(-1,0,0,0,1,0), (- 1,0,0,0,0.1), (- 1,0,0,0,0,-1),
111 1
(—1000 -1,0), 53505 )

-1,0,0,-1,0, 0) (—1,0,—1,0,0,0), (0,—1,—
1

11 1 111 11 1 1
5 S°A ] a_15_5__a_a_ 5 5_1a__5_a__a__ B
0.~ 22 2) (0 2722 2) 0.-1.-3.2:73 2)

)
(-
X
)
)
[

1l 1l
272 2’
I 1 1 1 I 1 11 11 11
(0"1’5’ 727 (P 5"5’5)’(0’ b2 723
111 1 1111 1 111 1 1 1
(“ 27272 ’z’z’z’z)’(l’l’ 2 2’5’5)’(1’1’5’5’_5’_5)’
11 1 1 I 1 11 I 11 1
(1’ 1"5"5"5"5) ’ (1’ b3y 5) ’ (1’ b7y 5"5) -

The weight polytope Ag is the convex enveloppe of these 27 points of R®. With the above list
of weights at hand, it is not difficult to obtain a new explicit list, of the sets of vertices of the facets
of Ag : for each facet F' of Ag, let Ir be the set of indices i such that w; € F. The ‘W-relevant
facets are 5-dimensional orthoplexes, with set of vertices of cardinality 10. For any such F, we
set Clo ®ic1, C €; the linear projection Iy : J — C10 is written Ip : (x,) —— (X;) je1, in the

hnear coordinates associated to the basis (C; )271 of J. Then the 27 rational maps
flrovg: 080 - P(CY) =P
are the first integrals of Gelfand-MacPherson web on OP2, written in coordinates.

Given a web-relevant facet F' associated to a conic class ¢ € Ky, there is an involution on Ir
when this set of indices is seen as a subset of Lg, given by £ — ¢’ = ¢ —{. Let Jr C I be a fixed
subset of cardinality 5 such that for any ¢ € I, either £ or ¢’ is in Jr. When seeing I as a subset
of {1,...,27}, we will denote this involution by i +— i},. To simplify the formulas, we will often
omit the subscript F in the lines below.

It can be verified that the closure in P? of the image of ITf o v%) is a smooth hyperquadric

Qr c P? cut out by a quadric equation of the form
qr = Z E€pjXjXj = 0
JjeJr
with er; € { 1} for any j € Jp. The basis (€;);e;, actually is a weight basis for the action of the
Lie group SO(gr) of type Ds on C}VO, with the action of a Cartan torus Hp =~ (C*)JF of SO(gr)
given by
A; € ifie Jr
A)r -G =

Wiesr - Ci {/1;1 G ifigJr.
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It can be verified that the action induced by the Cartan torus of E¢ obtained by taking the com-
plexification of TSO is linearly equivalent to the one described just above. Let Q. be Qr with the
union of the ten hyperplane sections Qr N {x; = 0} removed. Then Hf acts nicely with finite
kernel on QF, and gives rise to a rational morphism 77 : Qf — Y} = Q/Hp which can be
made explicit: fixing jo € Jr, we set J, = Jp \ {jo}. Then a birational model of 7 is given by

(77) tp o Py > P?

XjXj
[ ], — |- ,
i€l Xi X
J07Jo d je g

It follows that, possibly up to multiplying some of the monomials x;x; /(xiyxi) by -1, one
obtains a quotient morphism 75 : Oy — Y * with Y5 c P3 equal to the complement of
the hyperplane arrangement Hg C P3 cut out by uouiuouz(ug + uy + up + uz) = 0 for some
homogeneous coordinates u, . .., u3 on P3.

The action of Tgo on O @ O induced by the action (73)) is given by
(a,b,h)(u,v) = (ab(h‘/’ cu), b\ (h? - v)).

For (1, v) € O & O generic, one can find (a, b, k) € (C*)° such that (i, #) = (a, b, k) (u, v) is in
‘normal form’, that is such that

(78) i = (i, i, u3,1,1,1,1,1) and V=(1,%, V3, V4, Vs, Vs, V7, V8).

Moreover, the element (a,b,h) € (C*)6 satisfying (Z8) is essentially unique; that is, it is unique
up to the action of a certain finite subgroup of (C*)é, which can be explicitly determined with-
out difficulty. It follows that the ten algebraically independent variables iy, iy, i3 and 5, ..., Vg
define a rational chart on the quotient Y of Cayley octonionic projective plane OP? by the ac-
tion of the Cartan subgroup of Eg we are working with. Thus: (1) Y is rational; (2) Y¢ =

Spec(Clity, iy, it3, V3, - . ., ¥g]) is a birational model of it; and (3) up to the birational identification
Y¢ =~ Y, the following map corresponds to a rational section of the quotient map OP? --> Y:
(79) o6 : C® =Yg --> OP?> c P?

~\3 ~\8 Y
(@)L (7)) — vp(i.¥)
where # and ¥ stand for the two elements of O respectively defined by the LHS of the two equali-
ties in (Z8).

Post-composing o with the linear projections I1x then with the rational model 7 (defined in
(7)) of the quotient maps 7 : QF --> P> for all web-relevant facets F of Ag, we obtain 27 rational
maps
(80) UF=‘I~'F01:[FOO'6ZY6--9P3
which define a web, noted by Wgé” , which is the birational model of ‘W g]:l on Y¢ induced by the
birational identification Yg =~ Y.

Thanks to our choice of the specific version (ZQ) of the (split) octonionic product, the torus
actions and (Z3) are defined over R, and so are the bases of weight vectors ((Ei)l.zzl and
3 j)ig , induced by the linear isomorphisms (Z6). This has the pleasant consequence that all the
first integrals Uy are defined over R (in fact, over Z), which makes the effective computations we
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will perform from them — in order to study the ranks and abelian relations (ARs) of the web Wgé”
— significantly more efficient.

*

All the considerations and constructions above are not truly specific to the case r = 6; they
admit direct analogues in the case r = 7, which makes it possible to state the following result
uniformly for all r € {4,5,6,7}:

Proposition 7.3. Let V, be the minuscule representation in whose projectivization the homoge-
neous space G, = G,/P,, of dimension 7y,, embeds.
1. One can explicitly describe:

— a basis (¢;)1<i<y, of Vy, yielding an isomorphism V, ~ EBIU:’I Ce;;

— an daffine space A, of dimension y,;

— an affine embedding v, = (v, j)1<i<v, : Ar — Vp,
with the property that the image of the projectivization [v,] : A, — PV, has Zariski closure equal
to G,, that is,

v(A) =G, CPV, =P,

2. Moreover, one can describe just as explicitly an action of H, = (C*)" on V,EBZ.’:’1 =Ce¢,
satisfying the following properties:

— Each ¢; is a weight vector with respect to this action, associated to a weight w; € Q’,
which can be explicitly computed;

— The W-relevant facets of A, = Conv({wi}z.’:’ |) are entirely determined by the set of their
vertices: for each such facet F, let I C {1,...,v,} be the subset of cardinality 2r — 2
consisting of the indices i such that the weight w; associated to e; is a vertex of F;

— The set of k, subsets Ir’s can be explicitly determined hence the linear projections
1:[1: V= EB;.’:’lC ¢, — @iEIFC e = V.r

as well. The projectivizations of the compositions I ov, : A, — Vg for all web-relevant
facets F of the weight polytope A, are rational first integrals of the birational model
vy (ng ) of Gelfand-MacPherson web on G,.

3. For a certain subset of indices A, C {1,...,dim V,} of cardinality vy,, the affine embedding v,
post-composed with the natural projection GB;’:* C e = @4ea,C e, is alinear isomorphism defined
over R (actually, over Z). Consequently the H,-action on V, induces an action of the same torus
on A, = ®ueq,C e, which is a birational model of the action of the Cartan torus of G, on G,.

Moreover, one can provide an explicit list of algebraically independent monomials Mg for
s=1,...,y, which form an algebraic basis of the algebra of H,-invariant rational functions on
A,. Setting Y, = Spec(C[Ml, ey Myr]) =~ Cr, we obtain an explicit rational map P, : A, — Y,
which constitutes a birational model of the quotient map v, : G, — M, = G,/H,.

Finally, one constructs an explicit affine embedding o, : Y, — A, which is a (rational) section
of the quotient map A, — Y, = A,/H,, and such that the composed map Z, = 1,0 [v,] o o) :
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Y, --> MY, is birational. This yields a birational identification Y, ~ M, and the construction fits
into the following commutative diagram of rational maps:

[vr]

Ar—>gr

81) o l@, JT,

,
Y, —5 Y,

4. Given a ‘W-relevant facet F, let ¢ € K, be the conic class associated to it. Identifying the basis
{e; };.’:’1 with L,, the elements in the index set I appear in ‘associated pairs’, with {i, j} C I (with
i # j) being such a pair if and only if the sum of the two corresponding lines is equal to ¢. For
i € Ir, we denote by i’ the unique other element of Ir such that {i,i'} is an associated pair. We
then fix a subset Jp C I such that, setting Ji. = {j'}jej;, one has Ir = Jg U J.

Th~en the image of G, by the projectivization [[1g] : PV, > PV, p = P%’ =3 of the linear projec-
tion 11 is a smooth hyperquadric QF cut out by an equation of the form qr = e, & Xixr =0
in the coordinate system on V. dual to the base (¢;)ici,, with ep; € {+1} for every i € Jr. The
torus action on V. induced by that of H, on V, is equivalent to the one defined by

/l'Q,':/liei l'fl-EJF and /l-e,-=/ll-_,1e,- wheni ¢ Jp

forany A = (A‘Y)g;} € (C*)r_1 and any i € Ip. We fix jo € Jr and we set Jy, = Jp \ {jo}. It follows
that, as a rational map, the quotient map of P%’ =3 by the action of the torus of rank r — 1 induced
by that of H, is written

(82) T e N O e B ] jer

in the coordinates x;, i € Ir.

5. From the four points above, it comes that for any web-relevant facet F of A,, the explicit
rational map

(83) Up=tpol[llp]o[v]oo,: ¥, P73
makes commutative the following diagram of rational maps

[Vr] HF

A, G, Qr c P2
(o7 P, Tr TF
(34) _
=r TF r=3
Ur

in which we have Ilp = [ﬁF]|gr and Tr = Tfrlq,. It follows that the Ur’s are rational first
integrals of a k,-web of codimension r —3 on Y, = C, that we will denote by Wng , which is the
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birational model of ‘ngr” on Y, induced by the birational identification Y, ~ M ,. One has:
Wng _ W( Ur | W-relevant ) _ Ej( M) ‘

facet F C A, Y,
6. Given a web-relevant facet F, possibly up to multiplying certain components of the map Tr by
—1, then the image of Q. by T in P =3 is the complement of the arrangement of r— 1 hyperplanes
H, < P"=3 cut out by the equation

upuy - - - up—3(uo + uy + -+ +u—3) =0

in the homogeneous coordinates uy, . . ., u,_3 corresponding to the explicit expression 82) of the
map Tp. Moreover, the face map np = M, --» P2 is defined on Y and one has np(M;) =
P73\ H,. Finally, on Y,, there exists an explicit arrangement of hypersurfaces H, C Y, on the
complement Y, = Y, \ H, of which &, is defined and induces an isomorphism E, : Y, ~ Y. It
follows that the rational map Up = ntp o E, is defined on Y, with image Up(Y};) = P” S\ H,.

The result above has been established through direct computations and case-by-case verifica-
tions. It would nonetheless be of interest to provide a conceptual and genuinely uniform proof
valid for all values of r.

It can be verified that all the objects considered in the above result are defined over R. In
particular, this is true for the rational maps (83) which actually can all be written as rational maps
with non-zero coeflicients +1.

7.2. The virtual (r — 3)-ranks. Having explicit rational first integrals of the web Wfr M at our
disposal, the determination of the virtual ranks of these webs becomes a matter of formal compu-
tation. After carrying out the necessary calculations, we obtain the following result for the virtual
ranks of top-degree abelian relations:

Proposition 7.4. One has
p3(WeM) =(10,10.1)  hence p3(Wy™) =21
and  py(WM) =(28,20,1) hence pa(Wy™)=149.

7.3. The (r — 3)-abelian relations. Most of the results concerning the (ranks and abelian rela-
tions of the) first two Gelfand-MacPherson webs WGM appear to extend to the last two cases
(i.e., for r = 6 and r = 7). In any case, this holds for abelian relations of maximal degree, as
demonstrated below.

7.3.1. The master differential identity HLOGy,. In the affine coordinates Ui,...,up—3on Uy =
{up =1} = C 3, weset L =u;fori=1,....,r—3and L,_p = i 0“! = 1+er ; u;. Then one
defines a (r — 3)-differential form with logarithmic coefficients on P’~3 \ H, and with logarithmic
poles along the components of H, by setting

r=2 r=2 de
_ i—1 . Sk
Q= > (-D'in(Ly) /\ L
i=1 k=1
k#i
r=2

= Y (=)' In(L)dIn(L) A - Adin(LY A+ Adln (L) .
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Up to a scaling factor, Q, can also be defined as the antisymmetrization of In(L;) /\,’(;g dIn(Ly)
with respect to the L;’s. Then we have the following result:

Proposition 7.5. There exists (er)peqc, € {1 YKo unique up to sign, such that the following
differential relation is satisfied:

(HLOGy,) > erUp(Q) =0.
FeXK,

Consequently, the k-tuple (e U;(Qr)) Fex, can be seen as a (r — 3)-abelian relation for WY(ZM ,
again denoted by HLOGy,.

Proof. The current proof relies on direct computations performed in MapLel O

Remark 7.6. The (r—3)-form Q, is holomorphic and multivalued. It has a natural global unival-
ued real-analytic version, namely Q¥ = Z;:_lz(—l)"_lln ILi|dIn (Li)A---AdIn (L)A- - -Ad In (L,-p).
One can verify that the associated real-analytic identity
(HLOGY, ) > erUp(Q¥) =0.

" FeK,
holds true identically on Y.

7.3.2. Combinatorial (r — 3)-abelian relations. It is more convenient to formulate the results
of this subsection in terms of the web WGM on Y,. Since the representation V,, into whose
projectivization G, = G +/ P, embeds, is mlnuscule it admits a natural system of linear coordinates
x¢, indexed by L, ~ M, each uniquely determined up to scaling.

It follows from [SK] that the material described in §?? generalizes to all cases r = 4,...,7. In
particular, for each £ € L,, the image in Y, - by the quotient map - of the H,-invariant hyperplane
section {x, = 0} N G, is an irreducible divisor 9, along which the residue of the abelian relation
HLOGy, can be taken. We denote this residue by

AR;™ = Resp, (HLOGy, ).
We will use the following fact which characterizes the adjacency between the vertices and the

orthoplex facets of A, in terms of their respective labelling by the set of lines £, and the one of
conic classes %K;:

Lemma 7.7. The vertex of A, corresponding to € € L, is adjacent to the D,_\-facet corresponding
to ¢ € K, ifand only if c € € + L,, that is there exists £’ € L, such that ¢ = €+ {'.

For any ¢ € L,, we define K,(€) = {¢ € K|c— ¢ € L,}. This set can be identified with the
collection of (D,_;)-facets of the polytope A, that are adjacent to ¢, viewed as a vertex of A,. We
denote by ‘W§M[ the subweb of ‘WgM corresponding to these facets; that is,

Wy = W(rp|F e K.(0)).

Since the vertex figure of A, at £ is isomorphic to A,_j, we obtain a natural bijection K ,(£) =~
¥ ,_1. It follows that Wg ¢ is a k,_1-web.

With these notations in place, we obtain the following result by direct computation:

33Maple worksheets are available from the author upon request.
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Proposition 7.8. 1. For any ¢ € L,, the residue AR;_3 is a rational (r — 3)-AR. Its non-trivial
components are carried by the np foliations for all D,_-facets F of A, adjacent to €. In other
terms, AR;_3 is a complete (r — 3)-AR of ’WgMg

2. Actually, AR}~ 3 spans the space of (r — 3)-ARs of Wg ¢ Which is (r = 3)-rank 1: one has
AR(WgM) = (AR]).
3. For F € K.(), the np-component of AR;_3 is a linear combination with coefficients in
{—1,0, 1} of the following r — 2 wedge products fori=1,...,r =2:
din(mpy) A--- /\m Adln(ng,—3) .

4. The ARZ,_3 s for £ € L, are called ‘combinatorial ARs’. They span a subspace of dimension
pr3(WGM) = 1 of AR (WyM) which we will denote by AR (WM.

This results shows that some properties of ’Wg?’l admit natural generalizations to the cases
r = 5,6. It is natural to wonder if it might be the case of some other properties, e.g. the first
one of Corollary We believe that it is indeed the case and that for any r € {4,...,7}, the
following holds true:

One has p" (‘W) < 1 for any k,_,-subweb ‘W of WGM . Those for which the
virtual (r —3)-rank is 1 actually are of maximal (r —3)- rank 1. And these subwebs
are exactly the €, subwebs WG o Jorallt € L,.

7.3.3. The structure of AR" '3(’VVYGM ) From the results above, we deduce the following

Theorem 7.9. 1. One has

(85) AR (WEM) = AR (W) @ (HLOGy, ).

Moreover, AR’C_3 (‘M/Y(:M ) is of dimension p,_g(‘VVYGrM ) — 1 hence the (r — 3)-rank of (M/Y(:M is
pr-3(Wg™), that is, is AMP.

2. By residues/monodromy, the abelian relation HLOGy, spans the subspace AR’C_3(‘W}€M ) of
combinatorial ARs, which coincides with that of rational (r — 3)-ARs of (VVYGrM : one has

Res(HLOGy,) = AR (W) = AR (W),

3. For any smooth del Pezzo surface X, = dPy with d = 9 — r, using Serganova-Skorobogatov
embedding fss : dPy; — M, (cf. 24) above) one can recover in a natural way the weight r — 2
hyperlogarithmic abelian relation HLog of Wap, from the (r — 3)-AR HLOGy,.

We believe that the results known to hold for r = 4,5 generalize straightforwardly to the cases
r = 6,7. For instance, we are convinced that the following statement remains valid for » = 6,7,
in the context of the natural linear action of the Weyl group W, on the space of (r — 3)-abelian
relations of the web (VVYGrM
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The decomposition in direct sum 3)) is, in fact, the decomposition of AR" ™ (‘M/YC:M )
into irreducible W-representations. The I-dimensional subrepresentation spanned
by HLOGey, is (isomorphic to) the signature representation.

By analogy with the cases r = 4,5, one may also conjecture that AR’C_3((M/YC:M ) is irreducible as
a W,-representation. We will revisit this in a future work.

8. Perspectives and questions

In this final section, we begin by discussing natural generalizations to ‘WgsM of the many
remarkable properties enjoyed by Bol’s web. In §8.2] we offer some brief remarks on the possible
interpretation of the differential identity HLOG y, as the manifestation of a yet-to-be-determined
property of a certain scattering diagram that might be associated to Y.

8.1. Comparison between Bol’s web WGM and WG M The main objective of our previous pa-
per [PiS]] was to demonstrate that the web W P, formed by the ten pencils of conics on a smooth
del Pezzo surface of degree four dP4, shares many remarkable properties with Bol’s classical
web B =~ Wip, = WyciM . Moreover, in [Pi5, §4.5], we showed that any del Pezzo web “Wgp,

can be recovered from the Gelfand—MacPherson web WyGS M as its pull-back under an embedding
dP4 — Y, first considered by Serganova and Skorobogatov in [SS]].

One of the main results of the present paper is that, beyond this structural recovery, one can
also retrieve the most significant abelian relation of “Wgp, — namely, its hyperlogarithmic abelian
relation of weight three, HLog,p, — from the most notable (r — 3)-abelian relation of the former
web ‘WyGSM , namely HLOGy,. This naturally raises the question (at least for the author) of
whether the many remarkable properties satisfied by Bol’s web might also admit natural analogues
in the context of the Gelfand-MacPherson web ’WyGS M,

* % %

Below, we review the list of remarkable properties of Bol’s web as presented in [Pi5, §1.1],
and for each of them, we provide a brief comment regarding its possible generalization to the web
WM.

Ys

1. Geometric definition. The del Pezzo webs are defined as the webs on del Pezzo surfaces
whose foliations are the pencils of conics on these surfaces. It is plausible that a similar geometric
interpretation may exist for the Gelfand—MacPherson web ’WyG M Indeed, as established in [SS]
(see the very end of the proof of Theorem 6.1 therein), for any del Pezzo quartic surface dPy,
the associated Serganova-Skorobogatov embedding Fss : dP4 < Y5 induces an isomorphism of
Picard lattices Fg : Picz(Ys) =~ Picz(dP4). Let ¢ € Picz(dP4) be a conic class with associated
facet F C As and corresponding face map 7z : Y5 --> P2. Then, in [Pi5], we proved that the pull-
back of the linear system |Op2(1)| under the composition g o Fgg : dP4 --» P? coincides precisely
with the complete linear system | ¢|. This observation suggests that the map 7 : Y5 --> P?> may in
fact be induced by the complete linear system | ¢| when ¢ is now seen as an element of Picz(Ys).

2. Linearizability. Since it contains Bol’s web as a subweb, any del Pezzo web ‘Wgp, is non-
linearizable. It is currently unclear to what extent the (non-)linearizability of the web WyGS M is
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relevant. We do believe that this web is not linearizable, but we also consider this fact to be
non-essential. The approach discussed in [Pil] should allow to address this question.

3. & 4. Structure of the space of top degree ARs & maximality of the rank. The spaces of top
degree abelian relations of B ~ ‘WyG M and WyG M share the same structure. Indeed, in both cases,
there exists a subspace of so-called combinatorial ARs (denoted by a capital subscript C), such
that the following direct sum decompositions hold:

(86) AR(WGM) = ARc(WgG") @ (Ab)

ARP(WgM) = AR (WgM) @ (HLOGy, ).
Moreover, as is well known, Bol’s web has maximal rank 6. As shown above, the genuine 2-rank
of the web ‘WyGS M is equal to its virtual 2-rank. Therefore, both webs have AMP ranks. Regarding

abelian relations and the rank structure of the webs, the similarity between WyG M for r = 4 and
r =5 is clearly observable.

5. ‘Canonical algebraization’. In [Pi5, §3.5], we explained how Bol’s web can be canonically
recovered from the space of its combinatorial abelian relations. It is an interesting question to ask
whether a similar phenomenon holds for the web ’WyGS M We believe that it might be the case.

Let UQ? be the subspace of rational 2-forms on Y5 = C> spanned by the 30 wedge products
dInU;,AdInU;p foralli € [10]] and all a, b such that 1 < a < b < 3. This is the space generated
by all the components of all the combinatorial 2-abelian relations. It can be verified that UQ? is a

20-dimensional vector subspace of QC(Y ) We wonder whether the following statements hold:

e foranyy € Y, the evaluation map at this point, ev, : UuQ? — Q2 , w— w(y) is well-
defined and surjective. Consequently, its kernel K(y) = Ker(evy) lS a vector subspace of
UQ? of dimension 10;

e we thus obtain a map Y5 — G1o(UQ?) = G1o(C?), y — K(y) which, composed with
the Pliicker embedding, gives rise to a morphism

piYi— P( AlO Czo) — pGo)-! .
Composed by the birational identification Ys ~ Y5 (see (13)), this yields an embedding

uo®ll: Ys — PG~ such that the closure of the image Ys = u(Y3) provides a
compactzﬁcatzon of Y5 with ‘nice properties’.

A similar construction for the web WyGAlM on Y, ~ Mys gives rise to (the restriction to the

open stratum of) the log canonical embedding Mo s < P?, that is the embedding induced by the
complete linear system associated to the ample log-canonical divisor K— + (9/\/(0 5 (see [KTI]).

It is natural to ask whether an analogous result holds for the web ’WG on 3/ 5-

In [Col, the author studied the Chow quotient Ss//H of the spinor tenfold by the action of
the Cartan torus H c Spin(C!?). He proved that, up to normalization, this Chow quotient is
smooth with a boundary having simple normal crossings, and described the log canonical model
Y5 of Ss//H. It would be interesting to investigate possible relationships between the conjectural
compactification Y discussed above and the proper varieties Ss//H and Y5 studied by Corey in
his paper.
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6. Weyl group action. Thanks to a result by Skorobogatov, for any r = 4,...,7, the Weyl group
W, acts by automorphisms on Y, and preserves Gelfand—MacPherson web ‘WfM . From this,

we deduce a linear action of W, on AR" _3)(’WyGM ). In both cases, the components (Ab) and
(HLOGy, ) are isomorphic to the signature representation of W,.

7. Hexagonality and characterization. It has been known since Bol’s paper [Bo] that Bol’s web,
that is Wap, = (WJZ M can be characterized — up to local analytic equivalence — as the unique
planar hexagonal web that is not linearizable. It is natural, though perhaps somewhat naive, to ask
whether a similar characterization holds for the Gelfand—MacPherson web WyGS M

Let us discuss briefly what could be the analog of Bol’s characterization for this 5-dimensional
10-web. First, the formal similarity between the direct sum decompositions given in (86) suggests
that the appropriate analogue, for ‘WyGS M of the notion of a hexagonal 3-subweb in planar web

geometry might be the 5-subwebs of WyGS M which carry a non-trivial irreducible and complete
2-abelian relation. These subwebs have been described above in Corollary In particular,
it follows that not every 5-subweb of ’ng M carries a complete and irreducible 2-abelian rela-
tion. However, this does not prevent us from envisioning a Bol-type characterization of this web
based on its 5-subwebs. We now outline a few more specific remarks on what would need to be
established in order to derive such a characterization:

o Given a 10-web W of codimension 2 on a 5-dimensional manifold M, one defines a
function Ry on the set of its 5-subwebs by associating its 2-rank to any such subweb.
The natural question is then whether the function R%GM characterizes ’WyGS M up to local

5

analytic equivalence.

e Before attempting to investigate this question, it may be necessary to first study more thor-
oughly the analytic classification of 5-webs of codimension 2 on 5-dimensional manifolds.
In particular, one may ask:

— Is there a universal bound on the 2-rank of such a web? Could it be equal to 1?

— What can be said about the webs that achieve this maximal 2-rank?

— Can such webs be classified? Is there a unique normal form for them?

— Does the class of webs attaining the maximal 2-rank share, in some meaningful
sense, some ‘nice properties’ with the class of hexagonal planar 3-webs?

8. Description a la Gelfand-MacPherson. That Bol’s web 8 ~ ‘Wgp, can be described as a
Gelfand-MacPherson web is a result established in [[GM]]. This contrasts with WyGS M which is of
this type by definition.

While the fact that ‘WyGS M is of Gelfand—MacPherson type is immediate from its very definition,
extending this perspective to its master 2-abelian relation HLOGy, is a much more subtle and
interesting question, which deserves some further discussion. In their foundational work [[GM]],
Gelfand and MacPherson not only provide a geometric construction of Bol’s web (namely as the
web ‘WyGZ‘ M ), but also demonstrate how, within the same geometric framework, one can construct
the dilogarithm function and derive its 5-term functional identity. Remarkably, this identity arises
in their theory as a rather direct consequence of Stokes’ theorem, applied to the integration along
the fibers of the action of the Cartan torus of SL(R>) on the Grassmannian Gy (R?) of oriented
2-planes in R>. The integrand is an invariant differential 4-form representing the first Pontrjagin
class of the tautological bundle on G%" (R).
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It appears natural to us to seek a similar geometric construction for the master 2-abelian rela-
tion. A question in this direction was already raised in [PiS, §5.9], but for the weight 3 hyper-
logarithmic abelian relation HLog,p, associated with a smooth del Pezzo quartic surface dP,. In
light of the results of the present paper — particularly the fact that any identity HLog,p, can be
obtained from HLOGy, — we now believe that the following question should be preferred over
Question 5.7 in [Pi3]:

Question.— Can the differential identity HLOGy, be obtained a la Gelfand-MacPherson by
means of an invariant differential form CQ(P) on a real form S s of the spinor tenfold Ss, rep-
resenting a certain characteristic class P € H*(S'5, R)?

This is one of the questions suggested by our work that we find the most appealing and we plan
to work on it in the near future.

9. Modularity. The web Wyci M can also be interpreted as the web defined on My s by the five
forgetful maps ¢; : Mos — Mog =P\ {0, 1, oo}

Since it is defined on a moduli space via morphisms with a modular interpretation, it is reason-
able to describe ‘Wﬁ M as a ‘modular web’. In [Pi5] §4.6], we proved that that any del Pezzo web
“Wap, can also be qualified as ‘modular web’. This naturally leads to the following question:

Question. Does Gelfand-MacPherson’s web ‘WgsM admit an interpretation as a modular web?
For instance, is it naturally defined on a subvariety of some moduli space of projective configura-
tions?

At this stage, we do not have any clear insight into a possible answer to this question.

10. Cluster nature. An interesting feature of the web Wyp, = WﬁlM is that it is a ‘cluster
web’. In [PiS| §4.7], we showed that this property also holds for any del Pezzo web ‘W yp,. This
raised the question whether this holds for W GM as well. This is precisely what we established in
§l above, provided one admits cluster-like structures that are more general than classical cluster
structures.

8.2. An interpretation of HLOGy, in terms of a scattering diagram? The author has long
been fascinated by the functional equations of polylogarithms, among which Abel’s five-term
identity (Ab) for the dilogarithm stands out as particularly central and archetypal. In his view,
there are two especially meaningful explanations for why (Ab) holds: on the one hand, the
cohomological-analytic and geometric approach developed by Gelfand and MacPherson discussed
just above; on the other, the interpretation of this functional identity as a consequence of the con-
sistency of the scattering diagram associated with the X-cluster variety of type A,.

Although Gelfand—MacPherson’s perspective appears to us as the most elegant — indeed, it
is, in the author’s opinion, one of the most beautiful mathematical constructions he has ever en-
countered — the scattering diagram approach seems to offer a significantly broader scope. One
particularly appealing consequence of the latter theor is that any closed loop intersecting trans-
versely a (possibly countable) collection of walls in a consistent scattering diagram gives rise to
a dilogarithmic identity — which becomes a formal identity involving infinitely many terms if the
loop meets infinitely many walls.

3¥n the case of scattering diagrams arising from cluster algebras, this phenomenon has been thoroughly investi-
gated by T. Nakanishi. For further details, the reader is referred to Nakanishi’s book and article [Nal|] and [NaZ2].
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The fact that the spinor tenfold S5, and more generally all the spaces G, forr =4,..., 73, carry
a cluster-like structure of finite type invites us to dream of an interpretation of all the identities
HLOGy, in terms of certain properties of scattering diagrams associated with the spaces Y.

In [Dul], Ducat constructed a finite type LPA structure on S5 and described an associated scat-
tering diagram. It is natural to ask whether these objects admit versions defined on the torus
quotient Ys. Addressing this question would require a theory of coefficients and their mutations
for LPA algebras, which, to our knowledge, has not yet been developed.
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